Prove parziali per il corso di Matematica 2

Quarta Prova Scritta R

Si consideri il problema di Cauchy

$$\begin{cases} 2y''(x) = -\frac{1}{y^2(x)} \\ y(0) = 1 \\ y'(0) = 1 \end{cases}$$

 A_2 Determinare la soluzione del problema dato

 B_2 Disegnare il grafico della soluzione del problema dato

Terza Prova Scritta R

Si consideri la curva γ di equazioni parametriche

$$\begin{cases} x(t) = \frac{1}{2}(t-1)^2 \\ y(t) = \frac{4}{3}\sqrt{t^3} \end{cases} \quad t \in [1,3]$$

 A_2 Calcolare la lunghezza della curva γ . Si consideri la superficie S definita da

$$\begin{cases} x(u,v) = \cos(v) \\ y(u,v) = \sin(v) \\ z(u,v) = u \end{cases} \quad u \in [0,1] \quad , \quad v \in [0,2\pi]$$

 B_2 Calcolare l'area della superficie S

Seconda Prova Scritta R

Si consideri la funzione

$$f(x,y) = x^2 + y$$

 A_3 Determinare massimi e minimi assoluti di f su

$$B = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le 1, |xy| \le \frac{1}{4}\}$$

Prima Prova Scritta R

Si consideri la funzione

$$f(x,y) = x + \cos(y)$$

- A_4 Calcolare la derivata direzionale di f in $(1, \pi/2)$
- B_1 Scrivere l'equazione del piano tangente al grafico di f nel punto $(1, \pi/2)$
- C_1 Disegnare le curve di livello di f

Quarta Prova Scritta

Si consideri il problema di Cauchy

$$\begin{cases} y''(x) = \frac{3}{2}y^{2}(x) \\ y(0) = 1 \\ y'(0) = 1 \end{cases}$$

- $A_2\bigcirc$ Studiare esistenza ed unicità della soluzione del problema dato
- B_3 Determinare la soluzione del problema dato
- C_2 Precisare il campo di definizione della soluzione del problema dato
- D_3 Disegnare il grafico della soluzione del problema dato

Terza Prova Scritta

Si consideri la curva γ di equazioni parametriche

$$\begin{cases} x(t) = t(2-t) \\ y(t) = t(t-1)(t-2) \end{cases} \qquad t \in [0,2]$$

- A_2 Scrivere il vettore tangente alla curva γ
- B_3 Calcolare la lunghezza della curva γ . Si consideri la superficie S definita da

$$\begin{cases} x(u,v) = u^2 \cos(v) \\ y(u,v) = u^2 \sin(v) \\ z(u,v) = u \end{cases} \quad u \in [0,1] \quad , \quad v \in [0,2\pi]$$

- C_2 Calcolare il vettore normale alla superficie S
- D_3 Calcolare l'area della superficie S
- E_2 Oisegnare la curva γ .

Seconda Prova Scritta

Si consideri la funzione

$$f(x,y) = x + y + 1$$

 $A_3\bigcirc\,$ Determinare massimi e minimi relativi ed assoluti di f su \mathbb{R}^2

 B_3 Determinare massimi e minimi assoluti di f su

$$A = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1, -1 \le y \le 1\}$$

 $C_4\bigcirc$ Determinare massimi e minimi assoluti di f su

$$B = \{(x, y) \in \mathbb{R}^2 : -1 \le x \le 1, -1 \le y \le 1, |xy| \le \frac{1}{4}\}$$

Prima Prova Scritta

Si consideri la funzione

$$f(x,y) = x + x\sin(y)$$

- A_4 Calcolare il gradiente di f
- B_3 Calcolare la derivata direzionale di f in $(1, \pi/2)$
- $C_1\bigcirc$ Scrivere l'equazione del piano tangente al grafico di f nel punto $(1,\pi/2)$
- C_1 Calcolare

$$\lim_{(x,y)\to\infty} f(x,y)$$

 D_2 Disegnare le curve di livello di f