Prima Prova Scritta 12/03/1998

Si considerino le funzioni

$$f(x) = \sin x^3 \qquad g(x) = e^{x^2}$$

- A_2 Scrivere gli sviluppi di McLaurin di $\sin x$ e e^x di ordine n con il resto nella forma di Peano.
- $B_2\bigcirc$ Scrivere gli sviluppi di McLaurin di f e g di ordine 6 con il resto nella forma di Peano.
- C_2 Scrivere gli sviluppi di McLaurin di f(x)g(x) di ordine 6 con il resto nella forma di Peano.
- D_2 Calcolare, al variare di α reale

$$\lim_{x \to 0} \frac{(e^{x^2} - 1)\sin x^3}{x^{\alpha}}$$

 $E_2\bigcirc$ Determinare l'ordine di infinitesimo di $(e^{x^2}-1)\sin x^3$ nell'origine.

Seconda Prova Scritta 19/03/1998

Si considerino le funzioni

$$f(x) = \ln(1+x)$$
 $g(x) = (\sin x)^2$ $h(x) = \ln\left(1 + \frac{(\sin x)^2}{10}\right)$

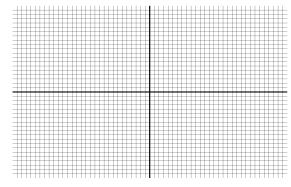
- A_3 Determinare il polinomio di McLaurin di f che approssima f a meno di $\frac{1}{200}$ sull'intervallo $[0,\frac{1}{10}]$.
- $B_3\bigcirc$ Determinare l'errore che si commette sostituendo ad h(x) il valore $\frac{(\sin x)^2}{10}$ per $x\in\mathbb{R}$
- C_3 Trovare lo sviluppo di McLaurin di g di ordine 2 e stimare il resto di Lagrange corrispondente per $x \in \left[-\frac{1}{10}, \frac{1}{10}\right]$
- $D_3\bigcirc$ Stimare l'errore che si commette sostituendo h(x) con $\frac{x^2}{10}$ per $x\in\left[-\frac{1}{10},\frac{1}{10}\right]$

Terza Prova Scritta 26/03/1998

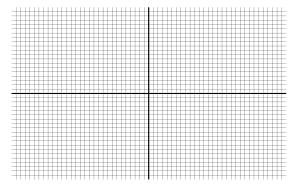
Si consideri la funzione

$$f(x) = (1+x)\arctan x$$

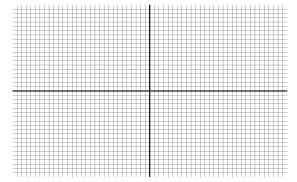
- A_1 Calcolare la derivata prima di f f'(x) =
- B_1 Calcolare la derivata seconda di f f''(x) =
- C_2 Disegnare il grafico di f'



 D_2 Disegnare il grafico di f



- E_2
 \bigcirc Precisare dove f è convessa e dove f è concava
- E_2 Determinare la retta tangente al grafico di f nei punti in cui f'' si annulla e stabilire la posizione di tale retta rispetto al grafico.



Quarta Prova Scritta 16/04/1998

Si consideri la funzione

$$f(x) = \begin{cases} x^2 + 1 & x \in [0, 1] \\ ax + b & x \in (1, 2] \end{cases}$$

- A_2 Determinare i valori di $a,b\in\mathbb{R}$ in corrispondenza dei quali f è integrabile su [0,2]
- $B_2\bigcirc$ Scrivere le somme superiori $U_1(f,P_n)$ della funzione f sull'intervallo [0,1] rispetto alla partizione

$$P_n = \{\frac{k}{n} : k = 0, 1, 2, ..., n\}$$

$$U_1(f, P_n) =$$

 C_2 Scrivere le somme superiori $U_2(f,Q_n)$ della funzione f sull'intervallo [1,2] rispetto alla partizione

$$Q_n = \{1 + \frac{k}{n} : k = 0, 1, 2, ..., n\}$$

$$U_2(f,Q_n) =$$

 $D_2\bigcirc$ Scrivere le somme superiori $U(f,P_n\cup Q_n)$ della funzione f sull'intervallo [0,2] rispetto alla partizione $P_n\cup Q_n$

$$U(f, P_n \cup Q_n) =$$

 E_2 Calcolare $\int_0^2 f(x) dx$ mediante il limite di $U(f, P_n \cup Q_n)$ per n che tende ad infinito, precisando le ragioni per cui tale limite fornisce l'integrale richiesto.

Quinta Prova Scritta 23/04/1998

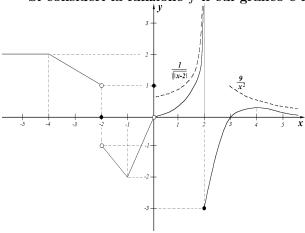
$$f(x) = \begin{cases} \arctan x + \frac{1}{x^2 - 1} & x < 3\\ \sin^2(x - 1) + a & x \ge 3 \end{cases}$$

- A_2 Determinare una primitiva di f su $(3,+\infty)$ precisando dove è definita.
- B_2 Determinare una primitiva di f su $(-\infty,3)$ precisando dove è definita.
- $C_2\bigcirc$ Determinare per quali $a\in\mathbb{R}$ f ammette primitiva su \mathbb{R} e determinarne una precisando dove è definita.
- $D_2\bigcirc$ Per i valori di $a\in\mathbb{R}$ per i quali f ammette primitiva su \mathbb{R} determinare tutte le primitive di f precisando dove sono definite.
- $E_2\bigcirc$ Calcolare al variare di $a\in\mathbb{R}\,\int_2^4f(x)dx$

$$\int_{2}^{4} f(x)dx =$$

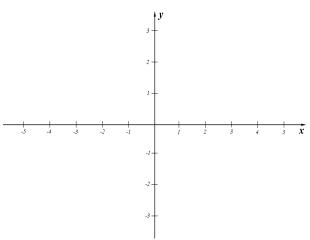
Sesta Prova Scritta 29/04/1998

Si consideri la funzione f il cui grafico è rappresentato di seguito



 A_5 Disegnare il grafico della funzione

$$F(x) = \int_{1}^{x} f(t)dt$$



 B_2 Precisare dove F è derivabile

 C_2 Calcolare, se esistono, F'(0), F'(0-), F'(0+).

 $D_1 \bigcirc$ Calcolare

$$F(x) = \int_{-10}^{-4} f(t)dt$$

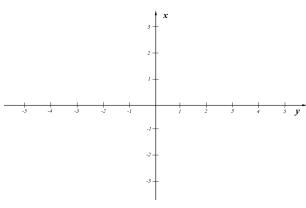
Settima Prova Scritta 07/05/1998

Si consideri il problema di Cauchy

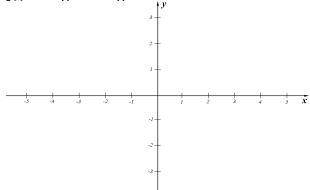
$$\begin{cases} y'(x) = e^{y^2(x)} \\ y(x_0) = y_0 \end{cases}$$

- $A_2\bigcirc$ Stabilire esistenza ed unicità locale della soluzione del problema, al variare di $x_0,y_0\in\mathbb{R}$
- B_3 Disegnare il grafico della funzione

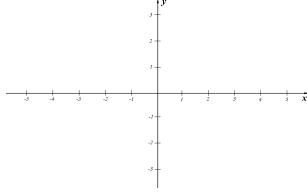
$$F(y) = \int_{y_0}^{y} e^{-t^2} dt$$



 C_2 Disegnare il grafico della soluzione che corrisponde ai dati iniziali $x_0 = 0, y_0 = 1$



 $D_3\bigcirc\,$ Disegnare il grafico delle soluzioni al variare dei dati iniziali $x_0,\,y_0$



Ottava Prova Scritta 07/05/1998

Si consideri il problema di Cauchy

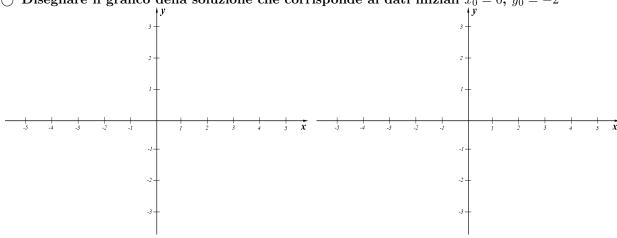
$$\begin{cases} y'(x) = f(y(x)) \\ y(x_0) = y_0 \end{cases}$$

dove

$$f(y) = \begin{cases} 1 & y > 1 \\ \sqrt[3]{y} & -1 \le y \le 1 \\ -1 & y < -1 \end{cases}$$

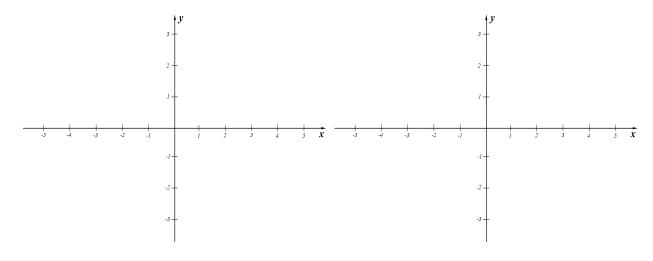
 A_2) Disegnare il grafico della soluzione che corrisponde ai dati iniziali $x_0=0,\ y_0=\frac{\pi}{4}$

 B_3) Disegnare il grafico della soluzione che corrisponde ai dati iniziali $x_0=0,\ y_0=-2$



 $C_2\bigcirc\,$ Disegnare il grafico della soluzione che corrisponde ai dati iniziali $x_0=0,\;y_0=2$

 $D_3\bigcirc\,$ Disegnare il grafico delle soluzioni al variare dei dati iniziali $x_0,\,y_0$



Nona Prova Scritta 21/05/1998

Si consideri l'equazione differenziale

$$y''(x) - 2y'(x) + 2y(x) = e^x + \sin x$$

- A_2
O Determinare tutte le soluzioni dell'equazione omogenea associata
- B_2 Determinare tutte le soluzioni dell'equazione completa
- C_2 Determinare la soluzione dell'equazione completa tale che y(0) = y'(0) = 0
- $D_2\bigcirc$ Scrivere il sistema di primo ordine equivalente all'equazione data
- E_2 Scrivere tutte le soluzioni del sistema trovato e determinarne una matrice fondamentale.

Decima Prova Scritta 02/06/1998

$$f(x,y) = x^3 + y^2$$

- $A_2\bigcirc$ Determinare massimi e minimi assoluti di f su \mathbb{R}^2
- $B_2\bigcirc$ Determinare massimi e minimi assoluti di f sul triangolo delimitato dalle rette y=x, y=2x-2, y=0
- C_2 Disegnare le curve di livello di f
- D_2 Calcolare la matrice Hessiana Hf(1,0) nel punto (1,0)
- E_2 Calcolare le derivate di f nel punto (2,0) rispetto ad ogni direzione (a,b) (f'((2,0),(a,b)))

Prima Prova Scritta 12/03/1998

Si considerino le funzioni

$$f(x) = \log(1 + x^4) \qquad g(x) = \cos(x)$$

- $A_4\bigcirc\,$ Scrivere gli sviluppi di McLaurin di fe g di ordine 5
- B_6 Calcolare,

$$\lim_{x \to 0} \frac{(g(x) - 1)^2 - f(x)}{x^4}$$

Seconda Prova Scritta 19/03/1998

Si consideri la funzione

$$f(x) = \arctan x$$

- $A_3\bigcirc\,$ Determinare il polinomio p(x) di McLaurin di f del primo ordine
- $B_3\bigcirc$ Scrivere il resto di Lagrange relativo al polinomio p(x) di McLaurin di f del primo ordine
- C_4 Determinare δ in modo che

$$|f(x) - p(x)| \le 10^{-3}$$

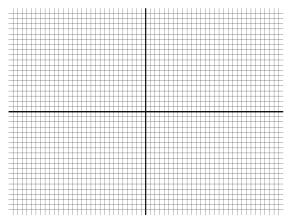
su $[-\delta, \delta]$

Terza Prova Scritta 26/03/1998

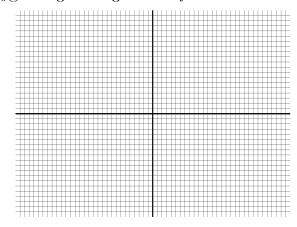
Si	consideri	la	fun	zio	ne
31	consideri	ıa	run	IZ101	ne

$$f(x) = x \log(1+x)$$

 $A_4 \bigcirc$ Disegnare il grafico di f'



 $D_6\bigcirc$ Disegnare il grafico di f



Quarta Prova Scritta 16/04/1998

Si consideri la funzione

$$f(x) = x^2 + x$$

 $A_5\bigcirc$ Scrivere le somme superiori $U(f,P_n)$ della funzione f sull'intervallo [0,1] rispetto alla partizione

$$P_n = \left\{ \frac{k}{n} : k = 0, 1, 2, ..., n \right\}$$

$$U(f, P_n) =$$

 B_5 Calcolare $\int_0^1 f(x)dx$ mediante il limite di $U(f,P_n)$ per n che tende ad infinito, precisando le ragioni per cui tale limite fornisce l'integrale richiesto.

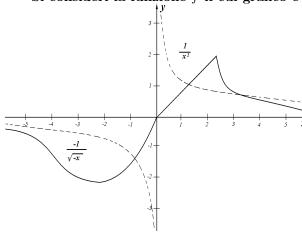
Quinta Prova Scritta 23/04/1998

$$f(x) = \begin{cases} 2ax + b & x > 0\\ \log(1+x) & -1 < x \le 0 \end{cases}$$

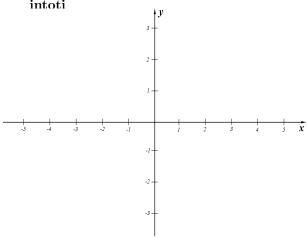
- A_3 Determinare $a, b \in \mathbb{R}$ in modo che f ammetta primitiva su $(-1, +\infty)$
- B_3 Determinare una primitiva di f su $(-1, +\infty)$.
- $C_4\bigcirc$ Per i valori di $a,b\in\mathbb{R}$ per i quali f ammette primitiva su $(-1,+\infty)$ determinare tutte le primitive di f

Sesta Prova Scritta 29/04/1998

Si consideri la funzione f il cui grafico è rappresentato di seguito



 $A_{10}\bigcirc$ Disegnare il grafico della funzione $F(x)=\int_0^x f(t)dt$ precisando crescenza convessità ed asintoti

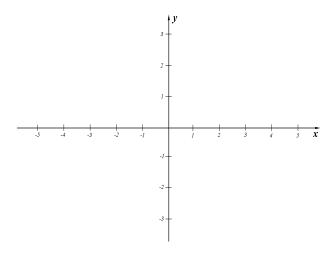


Settima Prova Scritta 07/05/1998

Si consideri il problema di Cauchy

$$\begin{cases} y'(x) = 1 + y^{4}(x) \\ y(x_{0}) = y_{0} \end{cases}$$

- $A_4\bigcirc$ Stabilire esistenza ed unicità locale della soluzione del problema, al variare di $x_0,y_0\in\mathbb{R}$
- $B_6\bigcirc\,$ Disegnare il grafico delle soluzioni al variare dei dati iniziali $x_0,\,y_0$

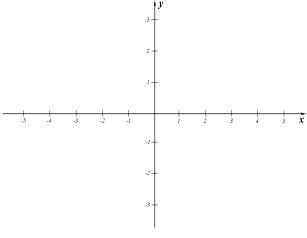


Ottava Prova Scritta 07/05/1998

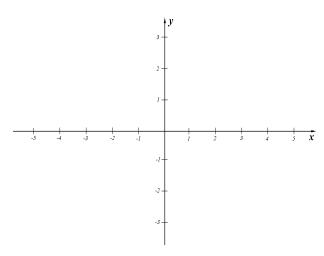
Si consideri il problema di Cauchy

$$\begin{cases} y'(x) = \sqrt{|y(x)|} \\ y(x_0) = y_0 \end{cases}$$

 A_5 Disegnare il grafico della soluzione che corrisponde ai dati iniziali $x_0=0,\ y_0=1$



 $B_5\bigcirc$ Determinare tutte le soluzioni costanti e disegnare il grafico delle soluzioni al variare dei dati iniziali $x_0,\,y_0$



Nona Prova Scritta 21/05/1998

Si consideri l'equazione differenziale

$$y''(x) - 3y'(x) + 2y(x) = e^x + x$$

- $A_3\bigcirc\,$ Determinare tutte le soluzioni dell'equazione omogenea associata
- B_4 Determinare tutte le soluzioni dell'equazione completa
- C_3 Determinare la soluzione dell'equazione completa tale che y(0)=y'(0)=0

Decima Prova Scritta 02/06/1998

$$f(x,y) = xy^2 - x$$

- $A_4\bigcirc\,$ Determinare massimi e minimi assoluti di f sul triangolo delimitato dalle rette y=2-x, y=2, x=2
- B_3 Disegnare le curve di livello di f
- C_3 Calcolare le derivate di f nel punto (1,1) rispetto ad ogni direzione (a,b) (f'((1,1),(a,b)))

Esame giugno 11/06/1999

Si consideri la funzione

$$f(z) = \int_0^z e^{-t^2} dt$$

 A_3 Studiare il grafico della funzione f

 B_3 Studiare il grafico della funzione per $\frac{1}{f(s)}ds$

 C_3 Studiare il grafico della funzione per

$$\int_{1}^{y} \frac{1}{f(s)} ds$$

 D_3 Disegnare il grafico della soluzione del problema di Cauchy

$$\begin{cases} y'(x) = f(y(x)) \\ y(x_0) = y_0 \end{cases}$$

Si consideri l'equazione

$$y'''(x) + 27y(x) = 2e^{-3x} + 1$$

 E_3) Determinare le soluzioni dell'equazione omogenea associata

 E_3 Determinare le soluzioni dell'equazione completa

 F_3 Scrivere un sistema del primo ordine equivalente all'equazione data.

 $G_6\bigcirc$ Determinare le soluzioni del sistema trovato precisando la matrice fondamentale del sistema omogeneo ad esso associato.

Esame Luglio 25/06/1999

Si consideri il problema di Cauchy

$$\begin{cases} y''(x) = 1 + (y'(x))^2 \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$$

- A_3 Provare che la soluzione del problema è convessa dove è definita.
- B_3 Provare che la soluzione ha un minimo locale in 0
- C_3 Disegnare il grafico della soluzione del problema dato
- D_3 Determinare esplicitamente tutte le soluzioni del'equazione differenziale data
- E_3 Disegnare il grafico di tutte le soluzioni dell'equazione data. Si consideri

$$f(x) = \tan(x)$$

- A_4 Determinare una primitiva di f
- B_3 Determinare tutte le primitive di f
- C_3 Determinare l'area a della parte di piano delimitata dagli assi, dalla retta x=1 e dal grafico della funzione f
- D_5 Stabilire se esiste e determinare $c \in [0,1]$ tale che f(c) = a

Esame Luglio 16/07/1999

Si consideri il sistema

$$\begin{cases} y'(x) = 3y(x) - 2z(x) + e^x \\ z'(x) = 2y(x) - z(x) + x \end{cases}$$

- A_3 Determinare tutte le soluzioni del sistema omogeneo associato
- B_3 Determinare tutte le soluzioni del sistema completo
- C_3) Determinare tutte le soluzioni del sistema omogeneo tali che y(0)=0
- D_3) Determinare tutte le soluzioni del sistema completo tali che y(0) = 0
- E_3 Precisare se le soluzioni ottenute in ciascuno dei punti precedenti è uno spazio vettoriale e, in caso affermativo trovarne la dimensione Si consideri

$$f(x) = \frac{2x}{1+x^2}$$

- A_4 Disegnare il grafico di f
- B_3 Disegnare il grafico di g(x) = f(E(x)) dove E indica la parte intera.
- $C_3\bigcirc$ Disegnare il grafico di $F(y)=\int_y^{+\infty}\frac{e^{-x}}{1+x^2}dx$
- $D_5\bigcirc$ Disegnare il grafico di $F(y)=\int_{g(x)}^{+\infty}\frac{e^{-x}}{1+x^2}dx$

Esame Settembre 17/09/1999

$$f(x) = \begin{cases} \frac{x}{x^2 + 1} & x < 0\\ 1 & 0 \le x < 1\\ \frac{1}{x} & 1 \le x < 2\\ \frac{10}{x^4} & x \ge 2 \end{cases}$$

- A_5 Disegnare il grafico di f
- B_5 Disegnare il grafico di f'
- C_5 Disegnare il grafico di $\int_1^x f(t)dt$ Si consideri l'equazione differenziale

$$y'(x) = y^7(x) - 1$$

- A_3 Disegnare il grafico della soluzione tale che y(0) = 0
- B_2 Disegnare il grafico della soluzione tale che y(0) = 1
- C_3 Disegnare il grafico della soluzione tale che y(0) > 1
- D_3 Disegnare il grafico della soluzione tale che y(0) < 1
- E_3 Disegnare il grafico di tutte le soluzioni

Esame Gennaio 17/01/2000

$$f(x) = \arctan(k(x^3 - x))$$

- A_5 Disegnare il grafico di f
- B_5 Disegnare il grafico di f'
- C_5 Disegnare il grafico di $\int_0^x f(t)dt$
- D_5 Determinare il numero di soluzioni dell'equazione f(x)=0 al variare di k Si consideri l'equazione differenziale

$$y'''(x) + y(x) = x$$

- A_3 Determinare tutte le soluzioni dell'equazione omogenea
- B_3 Determinare tutte le soluzioni dell'equazione completa
- C_4 Stabilire se le soluzioni del problema completo costituiscono uno spazio vettoriale e, in caso affermativo, determinarne la dimensione.
- D_5 Trovare tutte le soluzioni del problema completo tale che y(0)=0

Esame Febbraio 2/02/2000

$$f(x) = \ln|1 - \frac{x^2}{k^2}|$$

$$g(x) = \arctan(x)$$

- A_4 Disegnare il grafico di f
- B_3 Disegnare il grafico di g
- C_4 Disegnare il grafico di g(f(x))
- $D_4\bigcirc$ Disegnare il grafico di f(g(x))Si consideri l'equazione differenziale

$$\begin{cases} y'(x) = \frac{y(x)}{\sin y(x)} \\ y(x_0) = y_0 \end{cases}$$

- A_3 Studiare esistenza ed unicità della soluzione del problema assegnato
- $B_3\bigcirc$ Scrivere la retta tangente al grafico della soluzione per $x_0=y_0=1$
- $C_4\bigcirc\,$ Disegnare il grafico delle soluzioni del problema per $x_0=y_0=1$
- D_5 Disegnare il grafico delle soluzioni del problema.

Esame Febbraio 22/02/2000

Si consideri la funzione

$$f(x) = \frac{e^{-x}}{1 - x^2}$$

 A_4 Disegnare il grafico di f

 $B_{3}\bigcirc \ \ \mbox{Disegnare il grafico di }g(x)=\int_{0}^{x}f(t)dt$

 C_4 Disegnare il grafico di tutte le primitive di f Si consideri l'equazione

$$y(x) = 2 + \int_1^x \frac{1}{\sin(y(t))} dt$$

 A_3 Studiare esistenza ed unicità della soluzione del problema assegnato

 B_3 Determinare la soluzione dell'equazione data

 $C_4\bigcirc\,$ Disegnare il grafico delle soluzioni dell'equazione

 D_5 Scrivere il polinomio di McLaurin di grado 2 della soluzione del problema