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ABSTRACT

Ferrando, Elisabetta. Ph. D., Purdue University, May, 2005. Abductive Processes in
Conjecturing and Proving. Major Professors: Guershon Harel. Co-Chair: Fabio Milner.

The purpose of the present study was to build a cognitive model to identify and
account for possible cognitive processes students implement when they prove assertions
in Calculus, specifically a cognitive model that would help to recognize creative
processes of an abductive nature. To this end, Peirce’s Theory of Abduction and Harel’s
Theory of Transformational Proof Scheme have been used. The result has been the
construction of the Abductive System whose elements are {facts, conjectures, statements,
actions}; briefly, conjectures and facts are “act of reasoning’ generated by phenomenic or
abductive actions, and expressed by ‘act of speech’ which are the statements. At the base
of the construction of the Abductive System there is also the intention to show that the
creative processes own some components, and to separate this process from the belief
that it is not possible to talk about it because it is something indefinable and only
comparable to a “flash of genius”. The common denominator with Peirce’s work is the
philosophic spirit on which both works are based. Peirce wanted to legitimate the fact
that abduction is a kind of reasoning along with deduction and induction, in contrast with
many philosophers who regard the discovery of new ideas as mere guesswork, chance,
insight, hunch or some mental jump of the scientist that is only open to historical,
psychological, or sociological investigation. The definition of Abductive System allows
the researcher to analyze a broader spectrum of creative processes, and it gives the
opportunity to name and recognize the abductive creative components present in the
protocols. From the didactical point of view, it allows to recognize the variety of the

components of the creative processes, in order to respect them (usually it is not done this



way at school) and to improve them. Therefore, this framework could help teachers to be
more conscious of what has to be 1) recognized, 2) respected, and 3) improved, with

respect to a didactic culture of “certainty”, which follows preestablished schemes.



1. INTRODUCTION

Research in mathematics has long acknowledged the importance of autonomous
cognitive activity in mathematics learning, with particular emphasis on the learner’s
ability to initiate and sustain productive patterns of reasoning in problem solving
situations. Nevertheless, most accounts of problem solving performance have been
explained in terms of inductive and deductive reasoning, paying little attention to those
novel actions solvers often perform prior to their engagement in the actual justification
process. For example, cognitive models of problem solving seldom address the solver’s
idiosyncratic activities such as: the generation of novel hypotheses, intuitions, and
conjectures, even though these processes are seen as crucial steps through which
mathematicians ply their craft (Anderson, 1995; Burton, 1984; Mason, 1995).

The purpose of this study is to build a cognitive model to identify and account for
the possible cognitive processes students implement when they perform conjectures and
proofs in Calculus, and, more specifically a cognitive model that will help to recognize
creative processes of an abductive nature. To this end, Peirce’s Theory of Abduction and
Harel’s Theory of Transformational Proof Scheme are used.

The questions leading the research are:

1. Are the definitions of abduction, already given, sufficient to describe creative
processes of abductive nature? Or, is a broader definition of abductive process
needed to describe some creative students’ processes in mathematics proving? If

so0, what is that definition?

2. s one’s certainty about the truth of an assumption an indication for an initiation
of abductive reasoning in her or his process? Namely, how much is important the

level of confidence of the built answer to guide an abductive approach?



3. Is there continuity between the cognitive “tools” one uses to build a conjecture

and the means one uses to establish its validity?

4. Which elements convey an abductive process? In particular, does transformational

reasoning facilitate an abductive process?

Chapter 2 presents the literature this research is based on. The reader will find four
major tenets: the first tenet is related to the definition of abduction and its role,
considered under three different points of view: a) the logical and philosophical point of
view (Charles S. Peirce); b) the solving-problem process point of view (Cifarelli); ¢) the
adoption of the definition of abduction in different contexts (Magnani). The second tenet
concerns the Theory of Proof Schemes (Harel, 1998) and, particularly, the role of the
Transformational Proof Scheme and Harel’s definition of proof scheme for a subject. The
third tenet involves the “Reference System Continuity” (Garuti, Boero & Mariotti, 1996;
Pedemonte, 2002) born as a product of a study concerning the difficulties met by the
students in the approach to proof. The last part of the chapter deals with the topic of
proofs considered in three different conditions, namely, a) proof as product; b) proof as
process; ¢) the teaching of proof.

Chapter 3 presents the core of the research. Specifically, it describes the construction
of the Abductive System, which has been created with the aim to give new tools to
identify and analyze creative abductive processes involved when the subject is faced with
a task in Calculus.

Chapter 4 deals with the methodology, the reader will find the description of the site
and the participants, and how the data were collected and analyzed, the text of the two
exercises given to the students who participated at the research project, and the text of a
questionnaire given to the students with the aim of understanding their ideas about the
meaning and the role of a proof in mathematics.

Chapter 5 presents the analysis of the students’ protocols. The analysis of the
protocols is divided into two phases. The first phase shows a comprehensive description
of students’ behaviors in tackling the problem; in the second phase the creative processes

are detected and interpreted through the elements of the abductive system.



Chapter 6 deals with the discussion of the results brought to light by the previous
analysis. The chapter is divided into four sections. The first section evidences the
importance of creative abductive processes in mathematics, but more generally in the
sciences. The following three sections are dedicated to the analysis of three different
conditions, which seem to enhance the manifestation of creative abductive processes.
Briefly, these conditions are:

1. A didactical contract that encourages and emphasizes creative processes aimed at

understanding how things work in mathematics (section 2).

2. The chance of favoring (with an appropriate choice of tasks) transformational and
perceptual reasoning (Harel, 1998) to pass from the phase of exploration to the
phase of creative abductive act of reasoning (section 3).

3. The chance of favoring (with an appropriate choice of tasks) the “reference
system continuity” between the conjecturing phase and the evidencing phase, as a
facilitating condition for the success of the student, and therefore of his or her
satisfaction to fulfill the requirement of the task (section 4).

Section 5 discusses the kind of experimental sample taken into consideration, which is
represented by a group of students who voluntarily agreed to participate in the research
for this project.

Chapter 7 proposes the conclusions of my research and some implications for further
research.

In the last part of the thesis the reader will find the complete student transcripts, the
scanned samples of their protocols, and the data analysis of the questionnaire given to the
students at the beginning of the research project.



2. LITERATURE REVIEW

2.1  Peirce and his theory of Abduction

The majority of philosophers deny there is any logic in proposing a hypothesis.
For them the logic of discovery (if it can be properly called such) can only be concerned
with the investigation of the methods of testing hypotheses, which have already been
presented to us. Popper argues, “The initial stage, the act of conceiving or inventing a
theory, seems to me neither to call for logical analysis nor to be susceptible of it. The
question how it happens that a new idea occurs to a man...may be of great interest to
empirical psychology; but it is irrelevant to the logical analysis of scientific
knowledge”(Popper, 1959).

Thus, some philosophers have come to regard the process of constructing and
selecting a hypothesis as a reasonable affair, which is susceptible to logical analysis.
They feel that in scientific discovery, there may be more problems for the logician than
simply analyzing the arguments supporting already invented hypotheses. Peirce writes,
“each chief step in science has been a lesson in logic”(5.363). He apparently feels that
there is a conceptual inquiry, one properly called “a logic of discovery,” which is not to
be confounded with the psychology, sociology and history of discovery. However, most
contemporary philosophers are unreceptive to this view, giving most of their attention to
inductive reasoning, probability, and the principle of theory construction. Hanson, a
staunch supporter of Peirce’s view, writes “But for Peirce, the work of Popper,
Reichenbach, and Braithwaite would read less like a Logic of Discovery than like a Logic
of the Finished Research Report. Contemporary logicians of science have described how
one sets out reasons in support of a hypothesis once proposed” (Hanson, 1959).

One point should be made clear; when Popper, Braithwaite and Reichenbach urge
that there is no logical analysis appropriate to the actual thinking process in scientific

discovery they are saying nothing which Peirce or Hanson would reject. Peirce’s



intention is that the birth of new ideas can never satisfactorily be cleared up by
psychological, sociological and historical investigations alone. One important task of a
philosopher is to conduct a logical (conceptual) investigation of discovery. There can be
good reasons, or bad, for suggesting one kind of hypothesis over another. The reasons
may differ entirely from those that lead one to accept a hypothesis. Peirce wishes to show
that reasoning towards a hypothesis is of a different kind than reasoning from a
hypothesis. He realizes that the former *“has usually been considered either as not
reasoning at all, or as a species of Induction” But he states: “I don’t think the adoption of
a hypothesis on probation can properly be called induction; and yet it is reasoning”
(8.388).

Many philosophers only concern themselves with analyzing the reasons for
accepting a hypothesis. Hanson notes, “They begin with the hypothesis as given, as
cooking recipes begin with the trout.” To study only the verification of a hypothesis
leaves a vital question unanswered — namely, how hypotheses are “caught.” Natural
scientists do not ‘start from’ hypotheses. They start from data. Peirce’s theory of
abduction is concerned with the reasoning, which starts from data and moves towards

hypothesis.

2.1.1 A general description of Peirce’s theory of abduction

Before analyzing Peirce’s theory of abduction it is important to clarify his

classification of inference, which can be schematized as follows:

p
Explicative (analytic or deductive)

Inference < - .
i . Abductive
Ampliative (synthetic)

Inductive

1 C. S. Peirce, Letters to Lady Welby, (Irwin Lieb, ed. [New York: Whitlock’s, 1953]) p.42



In explicative inference the conclusion necessarily follows from the premises,
while in the ampliative inference the conclusion does not necessarily follow from the
premises. The conclusion amplifies rather than explicates what is stated in the premises.
All the empirical sciences use such reasoning. Moreover, it is the kind of reasoning that
introduces new ideas into our store of knowledge.

Peirce’s classification differs from the traditional classification because it includes
a novel type of inference in addition to induction and deduction. Most logicians identify
induction with synthetic reasoning. They fail to recognize the trichotomy of inferences
because, Peirce thinks, they have a too “narrow and formalistic conception of
inference”(8.228). These logicians generally confine their investigation of reasoning to its

‘correctness,” “by which they mean, its leaving an absolute inability to doubt the truth of
a conclusion so long as the premises are assumed to be true” (8.383). This amounts to
confining their study to deduction.

Peirce insists that ampliative reasonings are twofold: Induction and Abduction.
Abduction concerns itself with the reasons for adopting a hypothesis. The adoption of a
hypothesis on probation cannot properly be called induction; and yet it is reasoning and
though its security is low, its uberty is high” (8.388). Thus, from deduction to induction
and to abduction the security decreases greatly, while the uberty increases greatly.

Broadly speaking, abduction covers, “all the operations by which theories and
conceptions are engendered”(5.590). These operations are best manifested in the process
of arriving at a scientific hypothesis. Peirce thinks this process is essentially inferential:
“Although it is very little hampered by logical rules, nevertheless it is logical inference,
asserting its conclusion only problematically or conjecturally, it is true, but nevertheless

having a perfectly definite logical form” (5.188). Its form is:

The surprising fact is observed,
But if A were true, C would be a matter of course;

Hence, there is reason to suspect that A is true. (5.189)



Such a process is inferential because the hypothesis “is adopted for some reason, good or
bad, and that reason, in being regarded as such, is regarded as lending the hypothesis
some plausibility” (2.511n.).

Most writers who tackle Peirce’s theory of abduction divide his thought roughly
into two periods. The transition from one view to another was made around the turn of
the century, but since this transition takes place over an extended period of time it is
difficult to pinpoint a definite year. Peirce himself writes in 1910, “in almost everything I
printed before the beginning of this century I more or less mixed up hypothesis
[abduction] and induction”(8.227). Writers on Peirce vary greatly on this point. Judging
from Peirce’s writing, the best account is given by Burks; he names the year 1891, when
Peirce had retired to his home near Milford, Pennsylvania, as the beginning of a
transitional decade dividing the two periods.

In his earlier papers Peirce treats inference, and hence abduction, as an evidencing
process. The three types of inferences are considered separate and independent forms of
reasoning. Induction “infers the existence of phenomena such as we have observed in
cases that are similar,” while abduction “supposes something of a different kind from
what we have directly observed, and frequently something which it would be impossible
for us to observe directly”(2.640). For induction we generalize from a number of cases in
which something is true, and by extension, infer that the same thing is probably true of a
whole class. However, in abduction we pass from the observation of certain facts to the
supposition of a general principle to account for the facts. Thus, induction can be said to
be an inference from a sample to a whole, or from a particular to a general law; abduction
is an inference from a body of data to an explaining hypothesis, or from effect to cause,
“the former classifies, the latter explains”(2.636).

In papers written after 1891 Peirce widens the concept of inference to include
methodological processes as well as evidencing processes. The three kinds of reasoning,
while remaining distinguishable, become closely interlinked. Abduction furnishes the
reasoner with the hypothesis, while induction is the method of testing and verifying
(2.776). Peirce perceives the three kinds of reasoning as three stages of inquiry.

Abduction invents or proposes a hypothesis; it is the initial proposal of a hypothesis on



probation to account for the facts. Deduction explicates hypotheses, deducing from them
the necessary consequences, which may be tested. Induction consists of the process of
testing hypotheses. Thus, “Abduction is the process of forming an explanatory
hypothesis. It is the only logical operation which introduces any new ideas; for induction
does nothing but determine a value, and deduction merely evolves the necessary
consequences of a pure hypothesis” (5.171).

The two periods of Peirce’s thinking by no means exhibit two distinct theories of
abduction. The second period certainly represents Peirce’s mature judgment on the
matter, but it is the logical consequence of the earlier theory and can only be understood
clearly in light of the earlier theory.

2.1.2 The two periods of Peirce’ theory of abduction

The earliest phase of Peirce’s thought (from the earliest of his papers, until 1865)
is very much a Kantian phase based on Kantian logic. One of the most important
principles of Peirce’s theory of knowledge, which he derived from Kant, is the doctrine
that every cognition involves an inference. According to Kant there is no cognition until
the manifold of sense has been reduced to unity. This reduction is accomplished by
introducing a concept, which is not in and of itself a sensuous intuition. Thus, cognition
requires some operation upon the manifold to bring it to unity, and Peirce writes in 1861,
“An operation upon data resulting in cognition is an inference”(p. 21).

Peirce’s conception of inference is shown more clearly in his theory of perceptual
judgment: “Every judgment consists of referring a predicate to a subject. The predicate is
thought, and the subject is only thought-of. The elements of the predicate are experiences
or representations of experience. The subject is never experiential but only assumed.
Every judgment, therefore, being a reference of the experienced or known to the assumed
or unknown, is an explanation of a phenomenon by a hypothesis, and is in fact an
inference”(p. 21).

Peirce regards all mental processes as inferential. Thus, “inference” includes not
only deduction and induction but also hypothesis (what he will call later abduction),

which is “an operation upon data resulting in cognition,” or, “an explanation of a



phenomenon by a hypothesis.” However, in his early papers Peirce does not regard these
as three distinct and irreducible forms of inference. His position is that all forms of
inference may be reduced to Barbara. He writes in 1860, “It is clear that we draw no
other inference from a thing’s being a class other than what is directly expressed by
Barbara namely that whatever is true of an entire class is true of every member of the
class; hence all other syllogisms may be reduced to Barbara,”(Murphey, op. cit., pp. 21f)
Peirce’s philosophy in the 1860’s is based largely upon the notions of classical
logic, and particularly upon the subject-predicate theory of the proposition. But the
discovery of the logic of relations in the late 1860’s introduces propositions which are not
reducible to subject-predicate form. In 1870 Peirce published his first paper on the logic
of relations and analyzed the syllogisms as a form of logical relations, rather than as
fundamental formula of all argument (3.66). However, in “Deduction, Induction,
Hypothesis” (2.619-644), the forms of induction and hypothesis are set up in a manner
similar to that of 1868. Induction is the inference of the rule (major premise) and the case
(minor premise) and result (conclusion), while hypothesis is the inference of a case from

a rule and a result. The following example shows the relationships more clearly:

Deduction: Rule — All the beans from this bag are white
Case — These beans are from this bag
Result — These beans are white
Induction:  Case — These beans are from this bag
Result — These beans are white
Rule — All the beans from this bag are white
Hypothesis: Rule — All the beans from this bag are white
Result — These beans are white

Case — These beans are from this bag. (2.623)

“Induction is where we generalize from a number of cases of which something is true,
and infer that the same thing is true of the whole class. As, where we find a certain thing

to be true of a certain proportion of cases and infer that it is true of the same proportion of
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the whole class” (2.624). Hypothesis is where we find some surprising fact that would be
explained by supposing that it is a case of a certain general rule, and thereupon adopt that
supposition. This type of inference is called “making a hypothesis” (2.623). In this type
of inference one should keep in mind that, “When we adopt a certain hypothesis, it is not
alone because it will explain the observed facts, but also because the contrary hypothesis
would probably lead to results contrary to those observed” (2.628). Peirce seems to hint
here that hypothesis selection is involved in this kind of inference.

Explanatory hypotheses may be of widely different kinds and Peirce alludes to at
least three: (1) the kind, which refers to facts, unobserved when hypotheses are made, but
which are capable of being observed. For example, upon entering a room | find many
bags containing different kinds of beans. On a table there is a heap of white beans; | may
adopt the hypothesis that the heap is taken from a bag that contains white beans only. (2)
There are hypotheses that are incapable of being observed. This is the case about
historical facts: “Fossils are found, say, remains like those of fishes, but far in the interior
of the country. To explain the phenomenon, we suppose the sea once washed over this
land.” And, “Numberless documents refer to a conqueror called Napoleon Bonaparte.
Though we have not seen the man, yet we cannot explain what we have seen, namely, all
these documents and monuments, without supposing that he really existed” (2.625). (3)
Finally hypotheses refer to entities, which in the present state of knowledge are both
factually and theoretically unobservable. For example, “The kinetic theory of gases is an
illustration of this kind. These are the most important kinds of hypotheses in sciences”
(Fann, 1970).

Thus, in the 1870’s, abduction proper, the process of adopting a hypothesis, is
barely touched upon here. This is due to the fact that Peirce regards ‘inference’ as
essentially an evidencing process in this period.

According to the present theory induction and hypothesis are separate forms of
inference, “The essence of an induction is that it infers from one set of fact to another set
of similar facts, whereas hypothesis infers from facts of one kind to facts of another”
(2.642). It is impossible to infer hypothetical conclusions inductively. However, it should

be noted that even in this early formulation Peirce is not prepared to separate the two
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forms of inference absolutely: “When we stretch an induction quite beyond the limits of
our observations, the inference partakes of the nature of hypothesis” (2.640). Induction
and hypothesis, therefore, may be perceived as occupying opposite ends of the continuum
of ampliative inference. In the later period Peirce stretches the concept of induction to
include induction of characters, and abductions will appear to be a quite different kind of

inference.

2.1.3 The decade between 1890 and 1900

During the years between 1890 and 1900 Peirce’s theory of abduction undergoes a
fundamental change. Although the notion of abduction as the process of entertaining a
hypothesis became quite explicit in the early 1890’s, the three kinds of reasoning were
not as the three stages of inquiry until a decade later. This change does not constitute a
sudden abandonment of one view in favor of another entirely different view, for the
change was gradual and the roots of the latter view go further back.

In the years between 1891 and 1893 Peirce declares the following about the three forms
of inference: “By hypothetic inference, | mean, as | have explained in other writings, an
induction from qualities,” and, “By the hypothetic process, a number of reactions called
for by one occasion get united in a general idea which is called out by the same occasion”
(6.145). Induction is equated to the process of habit formation, while deduction is the
process whereby the rule or habit is actualized in action. This is exemplified in the way a
decapitated frog reasons when you pinch his hind legs: the habit serves as a major
premise; the pinching is his minor premise, and the conclusion is the act of jumping away
(6.144, 2.711, 6.286). Peirce’s concern here (in “The Law of Mind”) is merely to show
that the three forms of inference have analogues in psychological phenomena. The
treatment here seems little more than a restatement of the point already made in 1878
(2.643). Induction, hypothesis and analogy, “as far as their ampliative character goes, that
is, as far as they conclude something not implied in the premises, depend upon one
principle and involve the same procedure. All are essentially inferences from sampling”

(6.40). This statement clearly belongs to his early thinking, for according to his later
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thinking only abductions involve additions to the fact observed. Induction can never
originate any idea but simply confirms a hypothesis.

However, in Peirce’s other writings of the early 1890’s, characteristics of the later
view of abduction are already explicit. Taking issue with the Positivists in his 1893
revision of the earlier article, “On the Natural Classification of Arguments,” Peirce
reiterates his contention that hypothetic inference is a legitimate and independent form of
inference. A hypothesis “is adopted for some reason, good or bad, and that reason is
being regarded as leading the hypothesis some plausibility” (2.511 n.1).

In a manuscript of notes from a projected but never completed, History of Science,
written probably in the early 1890’s® Peirce adopts a new term, “Retroduction,” to
designate what he used to call hypothesis, and mentions that this is the same as
Aristotle’s “abduction” (1.65).® Peirce contends, “Retroduction is the provisional
adoption of a hypothesis, because every possible consequence of it is capable of
experimental verification, so that the persevering application of the same method may be
expected to reveal its disagreement with facts, if it does so disagree” (1.68). The
conception of abduction is obviously stretched to include the methodological process as
well as evidencing process. He begins to consider the reasons for adopting a hypothesis.

His conception of deduction and induction remains unchanged in the early 1890’s.
However, by 1898, deduction is clearly regarded as the process of tracing out the
necessary and probable consequences of a hypothesis. Peirce writes, “Reasoning is of
three kinds. The first is necessary, but it only professes to give us information concerning
the matter of our own hypotheses...The second depends upon probabilities...The third
kind of reasoning tries what il lume naturale...can do. It is really an appeal to instinct”
(1.630). Induction is not yet treated as the process of testing a hypothesis. The basic idea

is virtually expressed when Peirce, reflecting the “views of Whevell” in 1893, states that

2 It is dated in the Collected Papers as ¢.1896, but a more accurate date is provided by Wiener in Studies in
the Philosophy.... p. 344 n.5. He thinks it should be dated 1891-1892.

® In the later period Peirce commonly used the term abduction and sometimes retroduction or presumption.
He seems to prefer abduction as the best designation. In support of his use of the term he refers to “the
doubtful theory...that the meaning of the 25" chapter of the 2" book of the Prior Analytics has been
completely diverted from Aristotle’s meaning by a single wrong word having been inserted by Appellicon
where the original was illegible” (8.209). In 1901 he wrote a detailed investigation of this “doubtful theory”
in “The Logic of Drawing History from Ancient Documents” (7.249). See also 2.776, 2.37n, 5.144.
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“the progress in science depends upon the observation of the right facts by minds
furnished with appropriate ideas” (6.604).

It is obvious that Peirce is on his way to regarding the three modes of inference as
the three stages in scientific inquiry. An interesting point to be noted is the fact that up
until the end of the 19™ century, Peirce always listed the three modes of inference
according to degrees of certainty, namely: deduction, induction, and hypothetic inference.
After he comes to regard them as the three stages in an inquiry the list becomes:

abduction, deduction, and induction.

2.1.4 Abduction, Deduction, and Induction as the three stages of Inquiry

The first full statement of Peirce’s later theory of abduction is contained in his
1901 manuscript, “On the Logic of Drawing History from Ancient Documents.” When
surprising facts emerge, an explanation is required, and, “The explanation must be such a
proposition as would lead to the prediction of the observed facts, either as necessary
consequences or at least as very probable under the circumstances. A hypothesis then, has
to be adopted which is likely in itself and renders the facts likely. This step of adopting a
hypothesis as being suggested by the facts is what | call abduction” (7.202). A hypothesis
adopted in this way could only be adopted on probation and must be tested. Peirce calls
abduction the “First Stage of Inquiry” (6.469). “The first thing that will be done, as soon
as a hypothesis has been adopted, will be to trace out its necessary and probable
experimental consequences. This step is deduction” (7.203).

The next step is to test the hypothesis by conducting experiments and comparing
the predictions drawn from the hypothesis with the actual results of the experiment.
When we find that prediction after prediction is verified by experiment we begin to
accord to the hypothesis a standing among scientific results. “This sort of inference it is,
from experiments testing predictions based on a hypothesis, that is alone properly entitled
to be called induction” (7.206).

The three kinds of inference now become three stages in a scientific inquiry. They
are intimately connected as a method. Peirce’s view on the relationship between the three

modes of inference remains essentially the same from this date. He confines his attention
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mostly to scientific reasoning, and “inference” is mainly treated as a methodological

process.

2.1.4.1 The main differences between abduction and Induction

According to the early view both abduction and induction are “synthetic” in the
sense that something not implied in the premise is contained in the conclusion. The
difference between the two lies in the results of the inferences. Induction is reasoning
from particulars to a general law: abduction, from effects to cause. The former classifies
while the latter explains. Under Peirce’s present view any synthetic proposition, whether
it is a non-observable entity or a generalization (so-called), insofar as it is for the first
time entertained as possibly true, is a hypothesis arrived at by abduction. He states, “Any
proposition added to observed facts, tending to make them applicable in any way to other
circumstances than those under which they were observed may be called a
hypothesis...By a hypothesis, | mean, not merely a supposition about an observed
object...but also any other supposed truth from which would result such facts as have
been observed, so when Van’t Hoff, having remarked that the osmotic pressure of one-
per-cent solutions of a number of chemical substances was inversely proportional to their
atomic weights, thought that perhaps the same relation would be found to exist between
the same properties of any other chemical substance” (6.524f.). Under the earlier view,
this last example of abduction would have been called a “generalization” which would
only be the result of induction. Under the present view such generalization is suggested
by abduction and only confirmed by induction. In fact, Peirce now considers “laws” or
“generalizations” explanatory hypotheses. He writes, “An explanation of a Phenomenon
as the term is used in the so-called ‘descriptive’ sciences...consists in showing that the
observed phenomenon follows logically, either necessarily or probably, from Explanatory
Hypothesis required by sound logic. (Since science begins in observation, followed by
explanation, which in time leads to classification of phenomena, and classification

ultimately results in the discovery of law applicable to further explanation).”

* Logic Notebook, C. S. Peirce Papers, Houghton Library, Harvard University, p. 294 (1908).
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The relationship between abduction and induction is now very clear, “The
induction adds nothing. At the very most it corrects the value of a ratio or slightly
modifies a hypothesis in a way, which has already been contemplated as possible.
Abduction, on the other hand, is merely preparatory. It is the first step of scientific
reasoning, as induction is the concluding step...They are the opposite poles of reason, the
one the most ineffective, the other the most effective of arguments. The method of either
is the very reverse of the other’s...Abduction seeks a theory. Induction seeks for facts”
(7.217-218).

2.1.4.2 Abduction as hypothesis construction or Abduction as hypothesis selection?

Of what does abduction consist? Is it the logic of constructing a hypothesis, or the
logic of selecting a hypothesis from among many possible ones? Peirce himself did not
always keep this distinction in mind and often treated them as the same question. In some
of his writings he maintains, “Abduction consists in studying facts and devising a theory
to explain them” (5.145); “Abduction is the process of forming an explanatory
hypothesis” (5.171); or abduction “consists in examining a mass of facts and in allowing
these facts to suggest a theory” (8.209). In other writings he regards abduction as “the
process of choosing a hypothesis” (7.219). To understand the nature of abduction it is
necessary to investigate the relationship between hypothesis construction and selection.

As mentioned before, abduction is concerned with analyzing the reasons for
proposing a hypothesis. The question arises: Is abduction concerned with the reasons for
constructing a hypothesis in a certain way, or is it concerned with the reasons for
preferring one hypothesis over many other possible ones? At the outset these seem to be
two entirely different questions, but in practice the way one constructs a hypothesis is
innately connected with the notion of choosing the best hypothesis. The purpose of
constructing a hypothesis is to explain some facts. But from any given set of facts there
may be a countless number of possible explanatory hypotheses. “Consider the multitude
of theories that might have been suggested. A physicist comes across some new
phenomenon in his laboratory. How does he know but the conjunctions of the planets

have something to do with it or that it is not perhaps because the dowager empress of
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China has at that same time a year ago chanced to pronounce some word of mystical
power or some invisible jinnee may be present” (5.172); or “his daughter having on a
blue dress, he having dreamed of a white horse the night before, the milkman having
been late that morning, and so on?” (5.591): In one sense the proposing of a hypothesis is
no problem at all. But of the trillions of hypotheses that might be made only one is true.
The problem of constructing a good hypothesis is, thus, analogous to the problem of
choosing a good hypothesis. The two questions, in practice, merge together.

This analysis is implicit in the following definition of abduction: “The first
starting of a hypothesis and the entertaining of it, whether as a simple interrogation or
with any degree of confidence, is an inferential step which | propose to call abduction.
This will include a preference for any one hypothesis over others which would equally
explain the facts as long as this preference is not based upon any previous knowledge
bearing upon the truth of the hypotheses, nor on any testing of any of the hypotheses,
after having admitted them on probation. | call all such inference by the peculiar name,
abduction...” (6.525).

Peirce names three main considerations that should determine our choice of a
hypothesis (7.220): In the first place, a hypothesis must be such that it will explain the
surprising facts we have before us; in the second place, it must be capable of being
subjected to experimental testing. This point is closely connected with the doctrine of
Pragmatism; and, “In the third place, quite as necessary as consideration as either of those
I have mentioned, in view of the fact that the true hypothesis is only one out of
innumerable possible false ones, in view, too, of the enormous expensiveness of
experimentation in money, time, energy, and thought, is the consideration of economy”
(7.220).

Let us analyze the first consideration. The whole motive of our inquiry is to
rationalize certain surprising facts by the adoption of an explanatory hypothesis. “The
hypothesis cannot be admitted, even as a hypothesis, unless it be supposed that it would

account for the facts or some of them. The form of inference, therefore, is this:
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The surprising fact, C, is observed;
But if A were true, C would be a matter of course;

Hence, there is reason to suspect that A is true.

Thus, A cannot be abductively...conjectured until its entire content is already present in
the premise, ‘If A were true, C would be a matter of course’ (5.189). This explanation
shows how the phenomenon would be produced, come about, or result in case the
hypothesis were true. It may “consist in making the observed facts natural chance results,

as the kinetical theory of gases explain facts; or it may render the fact necessary” (7.220).

2.1.5 Peirce’s justification of abduction

A possible justification for abduction is that it is the only logical operation that
introduces any new ideas. Deduction explicates and proves that something must be;
induction evaluates and shows that something actually is operative. But abduction merely
suggests that something may be (may be and may be not) (5.171, 6.475, 8.238).

There are two aspects to the problem of justification. The formal aspect is
concerned with the rationale of abduction. The only justification for a hypothesis is that
it explains the facts (1.89, 1.139, 1.170, 2.776, 6.606). Now to explain a fact is to show
that it is a necessary or a probable result from another fact, known or supposed. Thus this
part of the problem is simply a question of reducing any given abductive inference to a
corresponding deduction. If the latter turns out to be valid, the correctness of the
abduction is guaranteed.

The form of abduction:

The surprising fact, C, is observed;

But if A were true, C would be a matter of course;

Hence, there is reason to suspect that A is true (5.189).

This is valid because the corresponding deduction is valid:
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If A were true, C would be a matter of course,
A is true;

Hence, C is true.

In answer to the question “how abduction is possible?” Peirce replies, “The
validity of a presumptive adoption of a hypothesis being such that its consequences are
capable of being tested by experimentation, and being such that the observed facts would
follow from it as necessary conclusions, that hypothesis is selected according to a method
which must ultimately lead to the discovery of the truth” (2.781). And, “Its only
justification is that its method is the only way in which there can be any hope of attaining
a rational explanation” (2.777, cf. 5.145, 5.171, 5.603). In other words, Peirce wants to
say that the validity of abduction depends upon the validity of the whole scientific
method.

The above “justification” seems to be merely a restatement of what abduction is
instead of providing an independent “validity” for abduction. In fact, it is doubtful
whether Peirce was ever satisfied with his justification of abduction. As late as 1910, he
writes, “as for the validity of [abduction], there seems at first to be no room at all for the
question of what supports it...But there is a decided leaning to the affirmative side and
the frequency with which that turns out to be an actual fact is to me quite the most
surprising of all wonders of the universe” (8.238).

Elsewhere Peirce tries to account for this “wonder” about the remarkable success
which abduction has achieved in leading to true theories about nature. Peirce contends
that the reasonable supposition is that man has come to the investigation of nature with a
special aptitude for choosing correct theories. This facility is derived from his instinctive
life through the process of evolution. Thus, the achievements of abduction are due to the
fact that human intellect is peculiarly adapted to the comprehension of the laws of nature.

In their immediacy abductions are often merely guesses; it is quite possible for us
to guess incorrectly on the first few occasions. But in the long run, “before very many

hypotheses shall have been tried, intelligent guessing may be expected to lead us to the
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one which will support all tests, leaving the vast majority of hypotheses unexamined”
(6.530). This is the foundation upon which abductive inference rests.

Peirce’s treatment of the validity of abduction is one of the most unsatisfactory
features of his theory. The claim that abduction is necessarily valid in itself is essential to
the whole theory, but he seems unable to provide a clear-cut justification for such a
claim. The affinity of mind with nature is a hypothesis, which can only be arrived at by
abduction and thus must not be used to support the validity of abduction. This failure to
provide an independent justification for abduction remains a difficult problem for

contemporary philosophers who maintain that there is a logic to discovery.

2.2 Cifarelli and the role of Abduction

Cifarelli approaches abduction from a different point of view than Peirce; part of
his research is concerned with the relationships between abductive approaches and
problem-solving strategies. The purpose of his work is to clarify the processes by which
learners construct new knowledge in mathematical problem solving situations, with
particular focus on instances where the learner’s emerging abductions or hypotheses help
to facilitate novel solution activity (Cifarelli, 1999). The basic idea is that an abductive
inference may serve to organize, re-organize, and transform a problem solver’s actions.

Cifarelli reveals that few studies of mathematical problem solving have specified
precisely the role of abductive actions in the novel solution activity of solvers, but the
research on problem posing (Silver, 1994; Brown and Walter, 1990) suggests ways that
hypotheses play a prominent role in solvers’ novel solution activity. According to Brown
and Walter (1990), problem posing and problem solving are naturally related in the sense
that new questions emerge as one is problem solving, that “we need not wait until after
we have solved a problem to generate new questions; rather, we are logically obligated to
generate a new question or pose a new problem in order to solve a problem in the first
place” (p.114). Furthermore, Silver (1994) asserts that this kind of problem posing,
“problem formulation or re-formulation, occurs within the process of problem solving”
(p.19). Finally, the cognitive activity of *“within-solution posing, in which one

reformulates a problem as it is being solved” (Silver and Cai, 1996, p.523), may aid the
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solver to consider “hypothesis-based” questions and situations (Silver and Cai, 1996,
p.529). According to Cifarelli, this illustrates both the dynamic, yet tentative nature of
solvers’ solution activity as well as the propensity of the solvers to abduce novel ideas
about problems while in the process of solving them.

To this extent Cifarelli has conducted a study with the purpose of analyzing the
problem posing and solving processes of the learners in mathematical problem solving
situations, with particular focus on ways that the learner’s emerging abductions or
hypotheses help to facilitate their novel solution activity; “Their interpretations of a
particular task may suggest to them additional questions and uncertainties, the
consideration of which helps them construct goals for purposeful action...In this way,
problem solving can be viewed as a form of abductive reasoning through which solvers
mentally reflect upon and contemplate viable strategies to relieve cognitive tension,
involving no less than their ability to form conceptions of, transform, and elaborate the
problematic situations they face” (Cifarelli, 1999)

The following example given by Cifarelli (in “Abduction, Generalization, and
Abstraction in Mathematical Problem Solving”, 1998) may highlight the core of his

work:

Marie is a student who was given a set of algebra word problems,
designed by Yackel (1984) to induce problematic situations.

Marie had to solve the first problem involving the depths of two lakes,
and then she was asked to solve eight follow-up tasks, each a variation
of the original problem. The problems were designed in such a way to
have a range of similar problem solving situations and hence develop
ideas about “problem sameness” in the course of her on-going activity.
The third problem had insufficient information; initially, Marie guided
by the sameness of the problem tried to solve it in the same way she
had solved the previous two; very soon she realized that it was not
possible and that became for her a novel situation. The abduction took
place at this point, namely Marie needed to find an explanation of her
failure.

<<...The same way (she smiles, then displays a facial expression
suggesting sudden puzzlement) impossible!! It strikes me suddenly that
there might not be enough information to solve this problem (she re-
reads and reflects on her work) | suspect I’m going to need to know the
height of one of these things (solver points to both containers in her
diagram). | don’t know though, so | am going to go over here all the
way through>>
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Cifarelli’s analysis of Marie’s process is as follows:
<<Marie’s anticipation that “the same way” would not work was followed by her
abduction that the problem did not contain enough information, later refined to the
hypothesis that she needed more information about the relative heights of the unknowns.
While the hypothesis contained elements of uncertainty, it helped organize and structure
her subsequent solution activity, whereupon she explored and tested its plausibility as an
explanatory device>> (p.7).

Cifarelli’s attention is focused on the abductive inference as a tool to enhance the
search for further strategies when the application of a previous solution did not work. The
hypothesis of the absence of enough information leads Marie to go through the problem
again to verify the plausibility of her hypothesis, and then to construct the necessary data
to solve the problem. Therefore, the researcher is not interested in the “typological aspect”
of abduction, but in the role such a process plays on the problem-solving activities.

Another example of Cifarelli’s work is represented by the analysis of some
episodes from interviews conducted with Jessica, one of the five graduate students in
Mathematics Education who participated to the project. The five students were enrolled in
a class, taught by the researcher, “The Use of Technology to Teach Middle and Secondary
Mathematics.” The students were interviewed on three occasions throughout the course.
These interviews took the form of problem solving sessions, where students solved a
variety of algebraic and non-algebraic word problems while “thinking aloud.”

The following is an excerpt of an interview with Jessica and the researcher’s
analysis of her work:

Problem: Sally, an avid canoeist, decided one day to paddle upstream 6
miles. In 1 hour, she could travel 2 miles upstream, using her strongest
stroke. After such strenuous activity, she needed to rest for 1 hour,
during which time the canoe floated downstream 1 mile. In this manner
of paddling for 1 hour and resting for 1 hour, she traveled 6 miles
upstream. How long did it take her to make this trip?

Jessica, after having read the problem, commented she had seen a similar problem before
but had not solved it.
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Jessica: | have had one like this...and I’'m not sure. |
had a similar one in Dr. L’s class. Upstream-
downstream, airplane flying with the wind behind them.
Professor L gave us a list of 100 problems. | looked
them over and did not choose this one. | didn’t do it, but
I did watch other students do it. So | have not technically
done this problem. (Appears confident she can do it®).
(Re-reads the problem; several seconds of reflection)
Jessica: Okay, distance is 6 miles. Let’s see...total time
is 2 hours...we have to modify this because upstream
means you are getting help and downstream means you
are not...Oh, wait...(reflection) 1 hour she travels 2
miles up...and she rests 1 hour...so it is not total is 2
hours. | read the last sentence...and | totally forgot what
I was supposed to find...the total time. Okay...distance
equals rate x time, so 1 hour, okay the distance is 2
miles, time is 1, and rate...(long reflection)...resting
distance is -1, equals rate...1 um...so (reflection;
appears frustrated)...l know | have to set an equation
then...l could...(reflection; facial expressions suggest
she is puzzled)

Cifarelli’s comment is: Jessica’s comments indicate that even though she had seen others
solve the problem before, she still had some difficulty solving the same problem. She
continued to reflect upon the situation and then had an idea to do something different to

solve the problem:

Jessica: (long reflection, makes motions with her
hands) okay! So she paddles first, then she rests. She
goes +2, then -1, she goes +2, -1, she goes +2 and 1, 3,
and she goes +2 again. So that’s 1,2...9 hours she makes
the trip. That’s not how they did it in class.

The interviewer questioned Jessica about her reasoning:

Interviewer: Ah, so you were thinking back to how they
did it?

Jessica: Well this reminded me of that problem. | was
trying to do what they did. But when | tried to do it their

> Comments in boldface describe the non-verbal actions of the solvers as inferred by the researcher.
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way, and try to get some equation going, it didn’t work. |
had to try something else. So just apply logic to it, it’s +2,
-1, +2, -1, then set up an equation (sic) to see if it works.

According to the author, Jessica’s explanation indicates both the provisional aspect of her
reasoning as well as the belief on her part that her ideas still need to be verified “to see if
they work’; namely, she abduces an idea of what the problem might be about and then
initiates the appropriate solution activity to test her abductive hypothesis.

Cifarelli’s work goes on, asking Jessica to solve an extension of the
aforementioned problem:

Suppose after 4 hours on the river, Sally took a lunch
break for 1 hour, during which time she floated
downstream. How long did it take her to go the 6 miles up
the river?

Researcher’s comment: Jessica solved the follow-up task
routinely. However, her solution surprised her and she
demonstrated abductive reasoning in “making sense” of her
solution.

Jessica: Okay...so paddling is +2, resting is -1, so she
rests another hour for lunch that’s another —1 so first hour
is +2:-1, +2:-1, and she did lunch, so that’s another —1. So,
1 there...she rests an hour, and another hour, so those 2
cancel out going back to 1 hour. So we have +2:-1,+2:-
1,...1,2,...6...11,12 hours to make trip with lunch break.

Jessica: What!? (She appears surprised by her result;
long period of reflection). Yeah, | guess that 1-hour sets
you back. (Several seconds of reflection)

Interviewer: What are you thinking?

Jessica: well, 1 was going to say that it would have been 10
hours, but | guess...maybe you have to add a whole ‘nother
cycle? (Reflection) Let’s see. (She annotates her
diagram). Yeah, you add +2:-1 to make up for that resting
time, that one -1, to put an extra 2 plus -1 in there, cause
that just cancels that whole one out there, and gives 3 more
than 9 total. So | guess it is 12, yeah...Sally’s crazy! 12
hours.
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Cifarelli’s comments about Jessica’s solution underline the fact that in solving the
initial task, her abduction helped her make sense of her realization that the way she has
seen others solve a similar problem would not work, and upon solving the extension of
the canoe problem, her abduction helps her make sense of the surprising fact that
inserting a one-hour rest time into the previous task changed the solution by 3 hours (and
not a mere 1 hour like she initially expected).

Finally, Cifarelli’s work seems to uncover a form of novel problem posing that
has not been addressed in the problem solving literature (like English, 1997: Silver, 1994;
Silver and Cai, 1996).

2.3  Magnani and Abduction

More than a hundred years ago, the great American philosopher Charles
Sanders Peirce coined the term “abduction” to refer to inference that
involves the generation and evaluation of explanatory hypotheses. The
study of abductive inference was slow to develop, as logicians
concentrated on deductive logic and on inductive logic based on formal
calculi such as probability theory. In recent decades, however, there has
been renewed interest in abductive inference from two primary sources.
Philosophers of science have recognized the importance of abduction in the
discovery and evaluation theories, and researchers in artificial intelligence
have realized that abduction is a key part of medical diagnosis and other
tasks that require finding explanations. Psychologists have been slow to
adopt the terms “abduction” and “abductive inference” but have been
showing increasing interest in causal and explanatory reasoning.

This abduction is now a key topic in cognitive science, the interdisciplinary
study of mind and intelligence. Lorenzo Magnani’s new book contributes
to this research in several valuable ways. First, it nicely ties together the
concerns of philosophers of science and Al researchers, showing, for
example, the connections between scientific thinking and medical expert
systems. Second, it lays out a useful general framework for discussion of
various kinds of abduction. Third, it develops important ideas about
aspects of abductive reasoning that have been relatively neglected in
cognitive science, including the visual and temporal representations and
the role of abduction in the withdrawal of hypotheses. The author has
provided a fine contribution to the renaissance of research on explanatory
reasoning. (Paul Thagard)

The book starts with the words written by Paul Thagard to underline the important
contribution offered by Lorenzo Magnani to the wide scenario of abduction. His attempt

is to explore abduction, meant as inference to explanatory hypotheses, and the aim is to
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integrate philosophical, cognitive, and computational issues, while also discussing some
cases of reasoning in science and medicine, in order to illustrate the problem-solving
process and to propose a unified epistemological model of scientific discovery, diagnostic
reasoning, and other kinds of creative reasoning.

The study of diagnostic, visual, spatial, analogical and temporal reasoning has
demonstrated that there are many ways of performing intelligent and creative reasoning
that cannot be described with only the help of classical logic. However, non-standard
logic has shown how we can provide rigorous formal models of many kinds of abductive
reasoning such as the ones involved in defeasible and uncertain inferences. To this extent
Magnani starts introducing two kinds of abduction, theoretical and manipulative, in order
to provide an integrated framework to explain some of the main aspects of both creative

and model-based reasoning effects engendered by the practice of science.

2.3.1 Theoretical Abduction

Theoretical abduction is the process of inferring certain facts and/or laws and
hypotheses that render some sentences plausible, that explain or discover some
(eventually new) phenomenon or observation; it is the process of reasoning in which
explanatory hypotheses are formed and evaluated. For instance, if we see a broken
horizontal glass on the floor® we might explain this fact by postulating the effect of wind
shortly before: this is not certainly a deductive consequence of the glass being broken (a
cat may well have been responsible for it).

There are two main epistemological meanings of the word abduction (Magnani,
1988, 1991): (1) abduction that only generates “plausible” hypotheses (creative or
selective) and (2) abduction considered as inference to the best explanation, which also
evaluates hypotheses. Creative abduction deals with the whole field of the growth of
scientific knowledge (Blois, 1984).

Selective abduction tends to produce hypotheses for further examination that have some

chance of turning out to be the best explanation.

® This event constitutes in its turn an anomaly that needs to be solved/explained.
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We can consider the following example, dealing with diagnostic reasoning and
illustrated in syllogistic terms (see also Lycan, 1988):

1. If a patient is affected by a pneumonia, his/her level of white blood cells

increases

2. John is affected by pneumonia

3. John’s level of white blood cells increases

(This syllogism is known as Barbara)
By deduction we can infer (3) from (1) and (2). Two other syllogisms can be obtained
from Barbara if we exchange the conclusion (or Result, in Peircean terms) with either the
major premise (the Rule) or the minor premise (the Case): by induction we can go from a
finite set of facts, like (2) and (3), to a universally quantified generalization - also called
categorical inductive generalization. Like the piece of hematologic knowledge
represented by (1). Starting from knowing — selecting — (1) and *“observing” (3) we can
infer (2) by performing a selective abduction.

Thus, selective abduction is the making of a preliminary guess that introduces a
set of plausible diagnostic hypotheses, followed by deduction to explore their
consequences, and by induction to test them with available patient data; (1) to increase
the likelihood of a hypothesis by noting evidence explained by that one, rather than by
competing hypotheses, or (2) to refute all but one.

Inside the theoretical abduction, Magnani defines the Visual abduction, bearing in
mind Peirce’s assertion, namely, that all thinking is in signs, and signs can be icons,
indices, or symbols. Moreover, all inference is a form of sign activity, where the word
sign includes “feeling, image, conception, and other representation” (CP. 5.283), and in
Kantian language, all synthetic forms of cognition. Therefore, Visual abduction, a special
form of non-verbal abduction, occurs when hypotheses are instantly derived from a
stored series of previously similar experiences. It covers a mental procedure that tapers
into a non-inferential one, and falls into the category called “perception.” Philosophically,
perception is viewed by Peirce as a fast and uncontrolled knowledge-production
procedure. Perception is in fact a vehicle for the instantaneous retrieval of knowledge that

has been previously structured in our minds through inferential processes.
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Peirce remarks: “Abductive inference shades into perceptual judgment without
any sharp line of demarcation between them” (Peirce, 1955c, p.304): By perception,
knowledge constructions are so instantly reorganized that they become habitual and
diffuse and do not need any further testing: “[...] a fully accepted, simple, and interesting
inference tends to obliterate all recognition of the uninteresting and complex premises
from which it was derived” (CP 7.37). Many visual stimuli — that can be considered the
“premises” of the involved abduction — are ambiguous, yet people are adept at imposing
order on them: “We readily form such hypotheses as that an obscurely seen face belongs
to a friend of ours, because we can thereby explain what has been observed” (Thagard,
1988, p. 53). This kind of image-based hypothesis formation can be considered as a form
of visual (or iconic) abduction.

Peirce gives another interesting example of model-based abduction related to
sense activity: “A man can distinguish different textures of cloth by feeling: but not
immediately, for he requires to move fingers over the cloth, which shows that he is
obliged to compare sensations of one instant with those of another”(CP, 5.221). This
surely suggests that abductive movements also have interesting extra-theoretical
characters and that there is a role in abductive reasoning for various kinds of
manipulations of external objects.

In conclusion, for Peirce all knowing is inferring and inferring is not
instantaneous, it happens in a process that needs an activity of comparisons involving
many kinds of models over a more-or-less considerable lapse of time. This is not in
contradiction with the fact that for Peirce the inferential and abductive character of
creativity is based on the instinct (the mind is “in tune with the nature”) but does not have
anything to do with irrationality and blind guessing.

Human beings and animals have evolved in such a way that now they are able to
recognize habitual and recurrent events and to “emotionally” deal with them, like in cases
of fear, that appears to be a quick explanation that some events are dangerous. During the
evolution such abductive types of recognition and explanation settled in their nervous

systems: we can abduce “fear” as a reaction to a possible external danger, but also when
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confronting a different type of evidence, like in the case of “reading a thriller”(Oatley,
1996).

In all these examples Peirce is referring to a kind of hypothetical activity that is
inferential but not verbal, where “models” of feeling, seeing, hearing, etc., are efficacious
when used to build both habitual abductions of everyday reasoning and creative
abductions of intellectual and scientific life. We have to remember that visual and
analogical reasoning is productive in scientific concept formation too; scientific concepts
do not pop out of our heads, but are elaborated in a problem-solving process that involves
the application of various procedures: this process is a reasoned process.

As we have seen, the general objective is to consider how the use of visual mental
imagery in thinking may be relevant to hypothesis generation and scientific discovery. In
this research area the term “image” refers to an internal representation used by humans to
retrieve information from memory. Many psychological and physiological studies have
been carried out to describe the multiple functions of mental imagery processes: there
exists a visual memory (Paivio, 1975) that is superior in recall; humans typically use
mental imagery for spatial reasoning (Farah, 1988); images can be rebuilt in creative
ways (Finke, and Slayton, 1988); they preserve the spatial relationships, relative sizes,
and relative distances of real physical objects (Kosslyn, 1980); for a more complete list,
see Tye (1991).

Kosslyn introduces visual cognition as follows:

Many people report that they often think by visualizing objects and
events [...] we will explore the nature of visual cognition, which is the
use of visual mental imagery in thinking. Visual mental imagery is
accompanied by the experience of seeing, even though the object or
event is not actually being viewed. To get an idea of what we mean by
visual mental imagery, try to answer the following questions: [...] How
many windows are there in your living room? If an uppercase version
of the letter n were rotated 90° clockwise, would it be another letter?
(Kosslyn and Koenig, 1992, p.128)

We can build visual images on the basis of visual memories but we can also use
the recalled visual image to form a new image, one we have never actually seen.
Certainly, imagery is used in everyday life, as illustrated by the previous simple answers,

nevertheless imagery has to be considered as a major medium of thought, as a mechanism
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for thinking relevant to hypothesis generation. Some hypotheses naturally take a pictorial
form: the hypothesis that the earth has a molten core might be better represented by a
picture that shows solid material surrounding the core.

There has been little research on the possibility of visual imagery representations
of hypotheses, despite abundant reports (e.g., Einstein and Faraday) that imaging is
crucial to scientific discovery, but also in creative literary and artistic realizations
(Koestler, 1964; Shepard, 1988, 1990). Einstein described having imaged the
consequences of traveling at the speed of light, which led him to the discovery of the
theory of special relativity. Faraday claimed to have visualized lines of force that
emanated from electrical and magnetic sources, leading to the modern conception of
electromagnetic fields.

Moreover, it is well-known that the German chemist Kekulé, used spontaneous
imagery to discover the structure of benzene; Watson and Crick have reported the use of
mental imagery in the interpretation of diffraction data and in the determination of the
structure of the DNA molecule (Holton, 1972; Miller, 1984, 1989; Magnani, Civita, and
Previde Massara, 1994; Nersessian, 1995a; Shepard, 1988, 1990; Thagard, Gochfeld, and
Hardy, 1992; Tweney, 1989).

Thus, after illustrating the computational imagery representation scheme proposed
by Glasgow and Papadias (1992), together with certain cognitive results, Magnani will
explore whether a kind of hybrid imagery/linguistic representation architecture can be
improved and used to model image-based hypothesis generation; i.e. to delineate the first
cognitive and computational features of what he call visual abduction.

The central theme of the recent imagery debate in cognitive science concerns the
problem of representation. How can we represent images? Are mental images represented
depictively in a picture, or like sentences of descriptions in a syntactic language?
According to Kosslyn’s depictionist or pictorialist view (Kosslyn, 1983), mental images
are quasi-pictures represented in a specific medium called the visual buffer in the mind.
Kosslyn’s model of mental imagery proposes three classes of processes that manage
images in the visual buffer: the generation process forms an image exploiting visual

information stored in long-term memory, the transformation process (for example,
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rotation, translation, reduction in size, etc.,) modifies the depictive image or views it from
different perspectives, and the inspection process explores patterns of cells to retrieve
information such as shape and spatial configuration. According to Pylyshyn’s
descriptionist view (1981, 1984) mental imagery can be explained by the tacit knowledge
used by humans when they simulate events rather than by a pictorialist view related to the
presence of a distinctive mental image processor.

According to Kosslyn’s cognitive model, the knowledge representation scheme of
mental imagery is composed of two different levels of reasoning, visual and spatial, the
former concerned with what an image looks like, and the latter depending on where an
object is located relative to other objects. The different representations of these methods
of reasoning exist at the level of working-memory and are generated from a descriptive
representation of an image stored in long-term memory in a hierarchical organization.
Information is accessed from long-term memory by means of standard retrieval,
procedural attachment and inheritance techniques.

According to Magnani, we can consider spatial representations as descriptive.

Thus, they are expressed by propositions containing predicates such as spatial
relationships and arguments as imaginable objects.
The spatial representation does not add information that cannot be expressed by
propositions. Notwithstanding this, the spatial representation is not computationally
equivalent to a descriptive one. In several imagery-related tasks (e.g. inspecting) spatial
representation may reduce the computational complexity of the solution: the symbolic
array adds more constraints to the search. As the spatial representations are depictive, and
denote the important spatial relations among parts of the image, they are useful in the
development of problem-solving devices related to the inspection and transformation of
images.

The use of imagery in scientific discovery illustrates a mechanism of thinking
relevant to hypothesis generation. Imagery also involves the simulation of image
transformations in order to anticipate the consequences of an action or event; constructing
novel images through operations such as compose, superimpose, and put, allows us to

detect information not previously observed.
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Having illustrated many issues concerning the phenomenon of imagery, which is
commonly and consciously experienced as the ability to form, transform and inspect an
image-like representation of a scene, and having indicated that such representations play
a role in problem-solving strategies involving visual or spatial properties of an image,
Magnani considers, from a computational philosophy perspective, a visual abductive
problem-solving strategy.

Although there is considerable agreement concerning the existence of a high-level
visual and spatial medium of thought as a mechanism relevant to abductive (selective and
creative) hypothesis generation, the underlying cognitive processes involved are still not
well understood. Notwithstanding this, Magnani will attempt to work around this gap in
our understanding: although describing a model able to “imitate” the real ways the human
brain works when it makes visual abductions would be best, his primary concern is its
expressiveness and inferential adequacy, rather than its explanatory and predictive power
as regards psychological research.

According to Magnani we can face an initial (eventually) observed image in
which we recognize a problem to solve. For example, given a visual or imagery datum,
we may have: (1) to explain the absence of an object; (2) explain why an object is in a
particular position; (3) explain how an object can achieve a given task moving itself
and/or interacting with the remaining objects in the scene/image; (4) to show how we can
recognize an object as having significance (for instance the recognition of a stone as a
toll) (Shelley, 1996).

How can “visual” reasoning perform these explanations? To answer this question
it is necessary to show how visual abduction may be relevant to hypothesis generation,
that is, how an image-based explanation is able to solve the problem given in the initial
image.

Faced with the initial image, in which we have previously recognized a problem
to solve, as stated above, we have to work out an imagery hypothesis that can explain the
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problem-data.” Thus, the formed image acquires a hypothetical status in the inferential
abductive process at hand.

1) We have to select from long-term memory a visual (imagery) description that is able to
explain the anomaly that needs to be solved; 2) we have to justify the presence/absence of
a given object in a scene selecting a suitable imagery explanatory hypothesis; 3) for
instance we have to visually solve the well-known monkey-banana problem: every
formed visual representation of the effect of a sequence of actions the monkey can
perform may be considered as a hypothesis generation. Such a hypothesis, if successful,
is viewed as the one selected that gives a solution to the problem; 4) a slightly differently
selected version of the initial image can perform the task of giving sense to an object.

The generation of a “new” imagery hypothesis can be considered the result of the
creative abductive inference previously described; in this respect we can consider how
the imagery representations of new hypotheses lead to scientific discovery. The selection
of an imagery hypothesis from a set of pre-enumerated imagery hypotheses, stored in
long-term memory, also involves abductive steps, but its creativity is much weaker: this
type of visual abduction can be called selective.

All we can expect of visual abduction is that it tends to produce imagery
hypotheses that have some chances of turning out to be the best explanation. Visual
abduction will always produce hypotheses that give at least a partial explanation, and
therefore have a small amount of initial plausibility. In this respect abduction is more

effective than the blind generation of hypotheses.

2.3.2 Manipulative Abduction

Manipulative abduction happens when we are thinking through doing and not
only, in a pragmatic sense, about doing. So the idea of manipulative abduction goes
beyond the well-known role of experiments as capable of forming new scientific laws by
means of the results (nature’s answers to the investigator’s question) they present, or of

"When discussing some problems related to the abductive reasoning, Bayesian networks, perception, and
vision, also Poole (2000) underlines that in vision we can think of a scene causing the image: “the scene
produces the image, but the problem of vision is, given an image, to determine what is in the scene”, that it
is an abductive task.
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merely playing a predictive role (in confirmation and in falsification). Manipulative
abduction refers to an extra-theoretical behavior that aims at creating communicable
accounts of new experiences to integrate them into previously existing systems of
experimental and linguistic (theoretical) practices.

The existence of this kind of extra-theoretical cognitive behavior is also testified
by the many everyday situations in which humans are perfectly capable of performing
very efficacious (and habitual) tasks without the immediate possibility of realizing their
conceptual explanation. In some cases the conceptual account for doing these things is at
one point present in the memory, but has now deteriorated, and it is necessary to
reproduce it. In other cases the account has to be constructed for the first time, like in
creative settings of manipulative abduction in science. Hutchins (1995) illustrates the
case of a navigation instructor that for 3 years performed an automatized task involving a
complicated set of plotting manipulations and procedures.

The insight concerning the conceptual relationships between relative and
geographic motion came to him suddenly, “as lay in his bunk one night.” This example
explains that many forms of learning can be represented as the result of the capability of
giving conceptual and theoretical details to already automatized manipulative executions.
The instructor does not discover anything new from the point of view of the objective
knowledge about the involved skill; however, we can say that his conceptual awareness is
new from the local perspective of his individuality.

In this kind of action-based abduction the suggested hypotheses are inherently
ambiguous until articulated into configurations of real or imagined entities (images,
models or concrete apparatuses and instruments). In these cases only by experimenting
we can discriminate between possibilities: they are articulated behaviorally and
concretely by manipulations and then, increasingly, by words and pictures.

Some common features of these tacit templates that enable us to manipulate things
and experiments in science are related to 1) Sensibility to the aspects of the phenomenon,
which can be regarded as curious or anomalous; 2) Preliminary sensibility to the
dynamical character of the phenomenon, and not to entities and their properties, one

common aim of manipulations is to practically reorder the dynamic sequence of events in
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a static spatial sequence that should promote a subsequent bird’s-eye-view (narrative or
visual-diagrammatic); 3) Referral to experimental manipulations that exploit artificial
apparatus to free new possibly stable and repeatable sources of information about hidden
knowledge and constraints; 4) Various contingent ways of epistemic acting: looking from
different perspectives, checking the different information available; comparing
subsequent events, choosing, discarding, imaging further manipulations, re-ordering and
changing relationships in the world by implicitly evaluating the usefulness of a new
order.

Manipulative abduction represents a kind of redistribution of the epistemic and
cognitive effort to manage objects and information that cannot be immediately
represented or found internally.

The interplay between manipulative and theoretical abduction consists of a
superimposition of internal and external, where the elements of the external structures
gain new meanings and relationships to one another, thanks to the constructive
explanatory theoretical activity (for instance Faraday’s new meanings in terms of curves
and lines of force).

In this light, Powers (1973) studied behavior, considering it as a control of
perception and not only as controlled by perception. Flach and Warren (1995) used the
term “active psychophysics” to illustrate that “the link between perception and action
[...] must be viewed as a dynamic coupling in which stimulation will be determined as a
result of subject actions. It is not simply a two-way street, but a circle” (p.202). Kirsh
(1995) describes situations (e.g., grocery bagging, salad preparation) in which people use
action to simplify choice, perception, and reduce demands for internal computation
through the exploitation of spatial structuring.

We know that theoretical abduction certainly illustrates much of what is important
in abductive reasoning, especially the objective of selecting and creating a set of
hypotheses (diagnoses, causes, hypotheses) that are able to dispense good (preferred)
explanations of data (observations), but fail to account for many cases of explanations
occurring in science or in everyday reasoning when the exploitation of the environment is

crucial. The concept of manipulative abduction is devoted to capturing the role of action
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in many interesting situations: action provides otherwise unavailable information that
enables the agent to solve problems by starting and performing a suitable abductive
process of generation or selection of hypotheses.

From the point of view of everyday situations manipulative abductive reasoning
exhibits very interesting features: 1) action elaborates a simplification of the reasoning
task and a redistribution of effort across time (Hutchins, 1995), when we “need to
manipulate concrete things in order to understand structures which are otherwise too
abstract” (Piaget, 1974), or when we are in the presence of redundant and unmanageable
information”; 2) action can be useful in the presence of incomplete or inconsistent
information — not only from the “perceptual” point of view — or of a diminished capacity
to act upon the world: it is used to get more data to restore coherence and to improve
deficient knowledge; 3) action as a control of sense data illustrates how we can change
the position our body (and/or of the external objects) and how to exploit various kinds of
prostheses (Galileo’s telescope, technological instruments and interfaces) to get various
new kinds of stimulation: action provides some tactile and visual information (e.g., in
surgery), otherwise unavailable; 4) action enables us to build external artifactual models
of task mechanisms instead of the corresponding internal ones, that are adequate to adapt
the environment to an agent’s needs.

Artificial Intelligence research has developed many computational tools for
describing the representation and processing of information. Cognitive psychologists
have found these tools valuable for developing theories about human thinking and for
their experimental research.

To escape relativism, epistemology is usually considered as the normative theory
of objective knowledge, and thus does not need to take into account what psychology
determines as the nature of individuals’ belief systems. Logic and epistemology are
concerned with how people ought to reason, whereas psychology is supposed to describe
how people actually think.

Empirical studies of cognitive psychology are descriptive: they are dedicated to
the investigation of mental processes and are concerned with normative issues only in

order to characterize people’s behavior relative to assumed norms. Al, when examined as
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cognitive modeling, is normally descriptive: only when it is concerned with improving on
people’s performances does it become involved with what is normative.

Epistemology, Al and cognitive psychology can be used together to develop models that
explain how humans think (Thagard, 1988, 1996).

If abduction is considered as inference to the best explanation, abduction is
epistemologically classified not only as a mechanism for selection (or for discovery), but

also for justification.

2.4 Abduction and Mathematics

Mathematicians and mathematics educators have recognized the influence of
abductive processes in mathematical thinking, although under different names. Lakatos
(1976) acknowledged the nonlinearity of inferential reasoning, stating that, “discovery
does not go up or down, but it follows a zigzag path; prodded by counterexamples, it
moves from the naive conjecture to the premise and then turns back again to delete the
naive conjecture and replace it with a theorem.”

Mason (1995) points out that in trying to avoid difficulties, “the curriculum turns

everything into behavior, avoids awareness, assumes deduction, tolerates induction, and
ignores abduction.”
Accounts of mathematics learning have long acknowledged the importance of
autonomous cognitive activity, with particular emphasis on the learners’ abilities to
initiate and sustain productive patterns of reasoning in problem-solving situations.
Nevertheless, most accounts of problem-solving performance have been explained in
terms of inductive and deductive reasoning, containing little explanation of the novel
actions solvers often perform prior to introducing formal algorithmic procedures into
their actions. For example, cognitive models of problem solving seldom address the
solver’s idiosyncratic activity, such as the generation of novel hypotheses, intuitions, and
conjectures, even though these processes are seen as crucial tools through which
mathematicians ply their craft (Anderson, 1995; Burton, 1984; Mason, 1995).
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2.5  Proofs and Proving

Much has been said and is still being said about proof, and amongst the questions
that have arisen is: What is a mathematical proof? What does prove mean in
mathematics? How do we teach a mathematical proof? What is the role of proof in
mathematics?

Throughout the 20™ century mathematicians and mathematics educators shared
many differing positions about this issue. The tenet of proof has been analyzed from
different points of view (pedagogical, historical, and cognitive), for this reason we must
differentiate between proof as product, proof as process and the teaching of proof.

2.5.1 Proof as product

The first half of the 20" century was characterized by the search for precision and
rigor (even though formalism has very ancient descendants: from the Greeks with
Aristotle and Plato to Leibniz (1646-1716) and Frege (1848-1925) to arrive at Hilbert
(1862-1943)). One very famous instance was a group of French mathematicians who

wrote under the name of Bourbaki:

The mathematics method teaches one...to find the common ideas

buried under the external apparatus of detail appropriate to each of the

theories considered, to single out these ideas and to exhibit them.
(Bourbaki, 1971, p.26)

Such an approach led to the 60’s where a great emphasis was given to formal
proof, considered the most important characteristic of modern mathematics, indeed
impressive work was done during the first 50 years of the century in clarifying the very
foundations of mathematics, work that demonstrated the enormous power of formal
systems constructed step by step from a base of definitions, axioms, and rules of
inference.

Among the results of such a work we can find the birth of three main schools of
thought going under the names of Logicism, Formalism, and Intuitionism.

Gottlob Frege, the German philosopher, logician and mathematician (1848-1925) began
the school of Logicism in about 1884. Bertrand Russell rediscovered the school about
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eighteen years later. Other early logicists were Peano and Russell’s co-author of Principia
Mathematica, A. N. Whitehead. The purpose of Logicism is to show that classical
mathematics is part of logic, and to this extent Russell and Whitehead created the
Principia Mathematica, which was published in 1910. The Principia may be considered
as a formal set theory: although the formalization was not entirely complete, Russell and
Whitehead thought that it was and planned to use it to show that mathematics can be
reduced to logic. They showed that all classical mathematics, known in their time, could
be derived from set theory and hence from the axioms of the Principia Mathematica.
Consequently, what remained to be done was to show that all the axioms of Principia
Mathematica belong to logic. Snapper (1979) states that in order to understand Logicism,
it is important to clearly understand what the logicists mean by “logic”. The reason is
that, whatever they meant, they certainly meant more than classical logic. <<Nowadays,
one can define classical logic as consisting of all those theorems which can be proven in
first order languages without the use of nonlogical axioms. We are thus restricting
ourselves to first order logic and the use of the deduction rules and logical axioms of such
logic. An example of such a theorem is the law of the excluded middle which says that, if
p is a proposition, then either p or its negation — p is true; in other words, the proposition
pv — pis always true where v is the usual symbol for the inclusive “or”>> (Snapper,
p.1). According to the author, the logicists’ definition was more extensive: they had a
general concept as to when a proposition should be called a “logical proposition.” They
stated: a logical proposition is a proposition that has complete generality and is true in
virtue of its form rather than its content (in Snapper, 1979). Here the word “proposition”
is used as synonymous with “theorem.” For example, the above law of the excluded
middle “ p v — p” is a logical proposition. Namely, this law does not hold because of any
special content of the proposition p; it does not matter whether p is a proposition of
mathematics or physics or what else. The logicists would answer that the proposition
holds “because of its form,” where by form they mean “syntactical form,” the form of

“p v — p being given by the two connectives of everyday speech, the inclusive “or” and

the negation “not” (denoted by v and —, respectively). The school failed by about 20%

in its effort to give mathematics a firm foundation, since, for example, at least two out of
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the nine axioms of the formal set theory developed by Zermelo and Fraenkel are not
logical propositions in the sense of Logicism; nevertheless, Logicism has been of the
greatest importance for the development of modern mathematical logic. In fact, it was
Logicism that launched mathematical logic in a serious way. The two quantifiers, the “for
all” quantifier Vv and the “there exists” quantifier 3 were introduced into logic by Frege
(1970), and the influence of Principia Mathematica on the development of mathematical
logic is now history.

The philosophy of Logicism is (it is sometimes said), based on the philosophical
school called “realism.” In medieval philosophy “realism” stands for the Platonic
doctrine that states, abstract entities have an existence independent of the human mind.
Mathematics is, of course, full of abstract entities such as numbers, functions, sets, etc.,
and according to Plato all such entities exist outside our mind; the mind can discover
them but does not create them. This doctrine has the advantage that one can accept such a
concept as “set” without worrying about how the mind can construct a set. According to
realism, sets are there to be discovered, not to be constructed, and the same holds true for
all other abstract entities. Therefore, realism allows us to accept many more abstract
entities in mathematics than a philosophy that limits us to accept only those entities
constructed by the human mind. Russell was a realist and accepted the abstract entities
that occur in classical mathematics without questioning whether our own minds can
construct them.

The school of Intuitionism came into being circa 1908, founded by the Dutch
mathematician, L. E. J. Brouwer (1881-1966). Logicists simply wanted to show that
classical mathematics was a part of logic; intuitionists, on the contrary, felt that there
were many things wrong with classical mathematics. By 1908, several paradoxes had
arisen in relation to the set theory created by Cantor, started around 1870. The logicists
considered these paradoxes as common errors, caused by erring mathematicians and not
by a faulty mathematics. The intuitionists, on the other hand, considered these paradoxes
as clear indications that classical mathematics itself was far from perfect; from their point
of view, mathematics had to be rebuilt from the bottom on up, and that meant starting

from the explanation of what the natural numbers 1,2,3...are. According to Intuitionism,
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all human beings have a primordial intuition for the natural numbers within them; this
means that we have an immediate certainty of what is meant by the number 1, and also
that the mental process used for the number one can be repeated. Such a repetition allows
us to conceptualize the number 2, and so on. In this way human beings can construct any
finite initial segment 1,2...n for any natural number n. According to Brouwer, the
possibility to construct one natural number after the other is given by human beings’
awareness of time (“after” refers to time); and his idea comes from the philosopher
Immanuel Kant (1724-1804) who already believed in the human beings’ immediate
awareness of time, and who called such immediate awareness, “intuition,” and this is
where the name Intuitionism (given by Brouwer) comes from.

The first evident difference between Intuitionism and Logicism is that the
intuitionist construction of natural numbers allows one to construct arbitrarily long finite
initial segments 1,2...n. It is not possible to construct the whole closed set of all the
natural numbers, as has been considered by classical mathematics. Furthermore, the
construction of the natural number is both inductive and effective. Inductive, because if
we want to construct the number 3, we have to go through all the mental steps have first
constructing the 1, and then the 2, and finally the 3: we cannot simply grab the number 3
out of the blue. It is effective, in the sense that, once the construction of a natural number
has been finished, that natural number has been constructed in its entirety.

With regards to the intuitionistic definition of mathematics, it should be defined as
a mental activity and not as a set of theorems; therefore, “Mathematics is the mental
activity which consists in carrying out constructs one after the other” (Snapper, p.3);
where a construct is a mental construction which is inductive and effective (in the sense
defined above), and Intuitionism maintains that human beings are able to recognize
whether a given mental construction contains these two properties. A major consequence
of the intuitionistic definition of mathematics is that it is effective or “constructive”; for
instance, “if a real number r occurs in an intuitionistic proof or theorem, it never occurs
there merely on grounds of an existence proof. It occurs there because it has been
constructed from top to bottom. [...] In short, all intuitionistic proofs, theorems,
definitions, etc., are entirely constructive™ (Snapper, p.3).
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Another consequence of the intuitionistic definition of mathematics is that
mathematics cannot be distilled to any other science such as, for example, logic, because
such a definition comprises too many mental processes for this kind of simplification. An
Intuitionist’s attitude toward logic is exactly the opposite of the logicists’: the valid part
of classical logic is part of mathematics; and any law of classical logic, which is not
composed of constructs, is for the intuitionists a meaningless combination of words. For
the intuitionists, the classical law of the excluded middle® turns out to be a meaningless
combination of words. Intuitionists have developed intuitionistic arithmetic algebra,
analysis, set theory, etc. However they do not achieve a reconstruction of all classical
mathematics, but this does not bother the intuitionists, since their purpose is not to justify
all classical mathematics, but to give a valid definition of mathematics and then to “wait
and see” what mathematics emerges. Whatever classical mathematics cannot be done in
an intuitionistically simple manner is not mathematics for the intuitionist. Therefore,
another fundamental difference between Logicism and Intuitionism is that the former
wants to justify all of classical mathematics.

The Intuitionistic school represents another crisis in mathematics in the sense that
its failure consists in the inability to make intuitionism acceptable to at least the majority
of mathematicians. The mathematical community has almost universally rejected
intuitionism for three main reasons; the first is that classical mathematicians refuse to
reject many theorems because they are meaningless combinations of words for the
intuitionists. A second reason comes from theorems that can be proven both classically
and intuitionistically. It often happens that the classical proof of such a theorem is short,
elegant, and clever, but not constructive. The intuitionists will of course reject such a
proof and replace it with their own constructive proof of the same theorem. However, this
constructive proof frequently turns out to be about ten times as long as the classical proof
and often seems, at least to the classical mathematician, to have lost all of its elegance.
An example of this is the fundamental theorem of algebra, which in classical mathematics

is proved in about half a page, but takes about ten pages of proof in intuitionistic

8 If p is a proposition, then either p or its negation — p is true. In other words, the proposition p v — p is
always true.
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mathematics. Finally, there are theorems that hold true in intuitionism but are false in
classical mathematics. An example is the intuitionistic theorem, which says that every
real-valued function, which is defined for all real numbers, is continuous. This theorem is
not as strange as it sounds since it depends on the intuitionistic concept of a function: A
real-valued function f is defined in intuitionism for all real numbers only if, for every real
number r whose intuitionistic construction has been completed, the real number f(r) can
be constructed. Any obviously discontinuous function a classical mathematician may
mention does not satisfy this constructive criterion. Even so, theorems such as this one
seem so far out to classical mathematicians that they reject any mathematics that accepts
them (Snapper, p.4).

Finally, intuitionism is related to the philosophy called “conceptualism,” just as
Logicism is related to Realism. Conceptualism maintains that abstract entities exist only
insofar as they are constructed by the human mind. Therefore, it can be determined that
the abstract entities that occur in mathematics, whether sequences or order-relations, are
all constructions of the mind.

German mathematician David Hilbert (1862-1943) founded the Formalist in
about 1910, even though traces of formalism can be found earlier in nineteenth century
since Frege argued against them in the second volume of his Grundgesetze der Arithmetik
(put the reference). Nevertheless, the modern concept of Formalism, which includes
finitary reasoning, must be credited to Hilbert. This last school is much better known than
logicism or intuitionism since modern books and courses in mathematical logic usually
deal with formalism. It is important not to get confused between axiomatization and
formalization: Euclid axiomatized geometry in about 300 B.C., but formalization only
started about 2200 years later with the logicists and formalists. Examples of axiomatized
theories are Euclidean plane geometry with the usual Euclidean axioms, arithmetic with
the Peano axioms, Zermelo and Fraenkel with the nine axioms, etc.

Hilbert’s basic idea was to formalize the various branches of mathematics and
then to prove mathematically that each was free of contradictions. Therefore, the original

purpose of formalism was to create a mathematical technique by means of which one
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could prove that mathematics is free of contradictions. The following excerpt attempts to
clarify such an idea:

[...] “How do we formalize a given axiomatized theory?”

Suppose then that some axiomatized theory T is given. Restricting us to
first order logic, “to formalize T,” means to choose an appropriate first
order language for T. The vocabulary of a first order language consists
of five items, four of which are always the same and are not dependent
on the given theory T. These four items are the following: (1) A list of
denumerably many variables — who can talk about mathematics without
using variables? (2) Symbols for the connectives of everyday speech,
say — for “not,” A for “and,” v for the inclusive “or,” — for “if then,”
and «» for “if and only if,” — who can talk about anything at all without
using connectives? (3) The equality sign =; again no one can talk about
mathematics without using this sign. (4) The two quantifiers, the “for
all” quantifier v and the “there exist” quantifier 3; the first one is used
to say such things as “all complex numbers have a square root,” the
second one to say things like “there exist irrational humbers”. One can
do without some of the above symbols, but there is no reason to go into
that. Instead, we turn to the fifth item.

Since T is an axiomatized theory, it has so called “undefined terms.”
One has to choose an appropriate symbol for every undefined term of T
and these symbols make up the fifth item. For instance, among the
undefined terms of plane Euclidean geometry, occur “point,” “line,”
and “incidence,” and for each one of them an appropriate symbol must
be entered into the vocabulary of the first order language. Among the
undefined terms of arithmetic occur “zero,” *addition,” and
“multiplication,” and the symbols one chooses for them are of course 0,
+, and X, respectively. The easiest theory of all to formalize is Zermelo
and Fraenkel set theory since this theory has only one undefined term,
namely, the membership relation. One chooses, of course, the usual
symbol e for that relation. These symbols, one for each undefined term
of the axiomatized theory T, are often called the “parameters” of the
first order language and hence the parameters make up the fifth item.
Since the parameters are the only symbols in the vocabulary of a first
order language, which depend on the given axiomatized theory T, one
formalizes T simply by choosing these parameters. Once this choice
has been made, the whole theory T has been completely formalized.
One can now express in the resulting first order language L not only all
axioms, definitions, and theorems of T, but more. One can also express
in L all axioms of classical logic and, consequently, also all proofs one
uses to prove theorems of T. In short, one can now proceed entirely
within L, that is, entirely “formally”. (Snapper, p.5)



44

It is important to underline that both logicists and formalists formalized the
various branches of mathematics, but their reasons were totally different. The logicists
were interested in formalization to show that the branch of mathematics in question
belongs to logic; the formalists wanted to use formalization to prove mathematically that
the branch in question is free of contradictions.

Nonetheless, another crisis in mathematics occurred in 1931, when Kurt Godel
showed that formalization couldn’t be considered as a mathematical technique by means
of which one can prove that mathematics is free of contradictions. Godel’s theorem says,

in nontechnical language, “No sentence of L (meant as the first order language L) which
can be interpreted as asserting that T is free of contradictions can be proven formally
within the language L,” therefore mathematics is not able to prove its own freedom of

contradictions.

2.5.1.1 The definition of formal proof

The vision of formal proof has taken different shapes during the decades of the
twentieth century: from a strict formalist view of proof, to an epistemological
interpretation of it, up to a more psychological explanation.

Duval (1991) makes a clear distinction between argumentation and deductive
reasoning. Argumentation is based on the structure of the language and on the listener’s
representations; therefore the semantic content of the propositions is fundamental.
Deductive reasoning is characterized by an “operational status” (statut opératoire) given
by: 1) Entry propositions (propositions données), which are hypotheses or conclusions of
a previous step; 2) Rules of inference (régles d’inférence), which are axioms, theorems,
and definitions; 3) New propositions (obtenues) which are the result of the inference. In a
deductive step the propositions are not related to each other for their semantic value, but
only by virtue of their operational status.

According to Duval a proof can be so defined only if it is a logical-formal
derivation, there is no concern for its semantic value but only for the syntactic value. Any

time we talk about the semantic content of a proposition and of the meaning of its
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enchainment we leave the deductive scheme (the proof) and we enter into the field of
argumentation.

A different position is taken by Lolli (1991), who gives value of proof both to a
logical-formal derivation and to a more “semantic procedure.” In his book “Introduzione
alla Logica Formale” he states: The final knowledge is knowledge about the reliability of
the relation of consequence, and they are quite abstract. The work made in process is
difficult, if not impossible, to be coded; nevertheless the final proofs which prove the
reliability of the relation of consequence sometimes maintain a trace of the involved
reflection, and in part they reproduce the informal reasonings (p.43).

Lolli shows two different approaches to the same proof of Rolle’s theorem: If f is
a continuous function in [a,b], a < b, and differentiable in (a,b), and f(a) = f(b), exist a
point in (a,b) where the first derivative of f is zero.

He compares the logic-formal structure of the proof with a structure containing
mixed expressions, with wide use of abbreviations, which correspond to the symbols
introduced in the predicative language, especially connectives and quantifiers, but
without respecting completely the syntax of the predicative language. He also uses
traditional mathematical symbolism, and he puts an asterisk on the main points where
argumentative passages have been used and which show a logical relevance.

What follows is an excerpt of the proof of Rolle’s theorem through the structure

that uses the mixed expressions:

In particular we have already proved that:
<<f continuous in [a,b]>> = 3 x € [a,b] <<f has an absolute maximum in x>>
and therefore, because for hypothesis

<<f continuous in [a,b]>>

we have

*) 3 x € [a,b] <<f has an absolute maximum in x>>,

We say then

*) let X be €[a,b] such that <<f has an absolute maximum in xo>>,

or more schematically
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*) Xo be €[a,b] and <<f has an absolute maximum in xo>>,

from which we obtain

(*) Xo €[a,b]

which we reflect on.

In fact it is not enough, because we want to find a point in (a,b), but we are close to, and
then we distinguish:

*) or X € (a,b) or (xo=aorxy=Dh)

and we treat separately two cases with the idea that in any case we will arrive at the same
conclusion.

If Xo € (a,b), we prove that f’(xo) = 0. We consider

(*) f'(x0) # 0,

namely, the denial of what we want to obtain. With some algebraic calculus, indicating
with Af the difference quotient of f, not properly because we don’t say in which point, but
the notation could be expanded, we can see that

V X (x € (a,b) and <<f has a maximum in x>> =

<<Af in an interval of x changes the sign>>),

but

Xo € (a,b) and <<f has a maximum in xy>>

therefore

<<Af in an interval of x, changes the sign>>

while the consideration made, using the theorem of the permanence of the sign comes out
also that

<<Af in an interval of x0 has always the same sign>>

we arrived at a contradiction, therefore we conclude

(*) f'(x0) = 0.

Therefore, we have

Xo € (a,b) and <<f’(xq) = 0>>
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from which

*) Ix (X € (a,b) and <<f’(x) = 0),

and finally,

* X0 € (a,b) = I x (X € (a,b) and <<f’(x) = 0>>)

And the proof goes on.

This kind of proof is different from a traditional mathematical proof as shown below.
Proof

Because f is continuous on a compact (closed and bounded) interval | = [a, b] it attains its
maximum and minimum values.

In case f(a) = f(b) is both the maximum and the minimum, then there is nothing more to
say, for then if f is a constant function and f = 0 on the whole interval I.

So suppose otherwise, and f attains an extremum in the open interval (a, b), and without
loss of generality, let this extremum be a maximum, considering —f in lieu of f as
necessary. We claim that at this extremum f(c) we have f’(c) = 0, with a < ¢ <b.

To show this, note that

f(x) — f(c) <0 Vxe I, because f(c) is the maximum.

By definition of the derivative, we have that

£1(c) = lim )= 1€
X—C X—C

Looking at the one-side limits, we note that

R=lim X =f)
x—c* X—C

because the numerator in the limit is non-positive in the interval I, yet x - ¢ > 0, as X
approaches ¢ from the right.

L= Iim—f(x)_ f(©) >0
Similarly, x> X—C
Since f is differentiable at c, the left and the right limits must coincide, so 0 <L =R <0,
that it is to say, f’(c) = 0. (g.e.d)
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2.5.1.2 Lakatos’ theory of “Proof and Refutation”

The position taken by Lakatos is critically relevant as it is he who shows that,
though mathematics is not an empirical science, its methods are very similar to those of
the empirical sciences; he refers to mathematics as quasi-empirical. Lakatos goes on to
say that mathematics grows through an incessant “improvement of guesses by
speculation and criticism, by the logic of proof and refutation” (Lakatos, 1976). In this
sense no proof is final, and what leads to the improvement of a proof and its growing
acceptance is the social process of negotiation of meaning, rather than the application of
formal criteria from the outset.

Lakatos espouses a scheme for the mathematical discovery, namely for the growth
of the informal theories of mathematics. It consists of the following stages:

(1) Primitive conjecture.

(2) Proof (a rough thought — experiment or argument, decomposing the primitive

conjecture into sub conjectures or lemmas).

(3) ‘Global’ counterexamples (counterexamples to the primitive conjecture)
emerge.

(4) Proof re — examined: the “guilty lemma’ to which the global counterexample
is a ‘local’ counterexample is spotted. This guilty lemma may have previously
remained ‘hidden’ or may have been misidentified. Now it is made explicit,
and built into the primitive conjecture as a condition. The theorem - the
improved conjecture — supersedes the primitive conjecture with the new proof
— generated concept as its paramount new feature®.

These four stages constitute the kernel of proof analysis. But there are some further
standard stages that frequently occur:

(5) Proofs of other theorems are examined to see if the newly found lemma or the
new proof — generated concept occurs in them: this concept may be found

° Editor’s note: In other words this method consists (in part) of producing a series of statements Py,..., P,
such that P; &...P,, is supposed to be true of some domain of interesting objects and seems to imply the
primitive conjecture C. This may turn out not to be the case — in other words we find cases in which C is
false (‘global counterexamples’) but in which Py to P,, hold. This leads to the articulation of a new lemma.
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lying at the crossroads of different proofs, and thus come to be of basic
importance.

(6) The hitherto accepted consequences of the original (and now refuted)

conjecture are checked.

(7) Counterexamples are turned into new examples; new fields of inquiry open

up.

The author makes a clear critique of what he calls the “deductive style,” defined
as that obligatory style of presentation developed by the Euclidean methodology. He
claims that such a presentation begins with an accurately formulated list of axioms,
lemmas, and/or definitions. The axioms and the definitions frequently appear artificial
and complicated, and it is never said how such complications arise. The theorems follow
then the axioms and the definitions. These last ones have heavy conditions; it seems
impossible that someone could have ever created such concepts. For each theorem its
proof follows.

In the deductive style of presenting a mathematical theory or a mathematical
proof, all the propositions are true and all the inferences are valid. Counter examples,
refutations, and critiques can never be taken into consideration. Lakatos, states that the
deductive style hides the struggle, the adventure. The whole history disappears, and all
the attempts made during the process of proving are neglected and only the final result is

dignified.

2.5.1.3 The Debate between Thurston and Jaffe & Quinn

In 1994 William Thurston wrote a very interesting paper (Thurston, 1994) in
response to an article by Jaffe and Quinn (1993) who cautioned against weakening the
standards of mathematical proof. They advocate two stages through which information
about mathematical structures are achieved, distinguishing between theoretical
mathematics, and rigorous mathematics. The former is represented by the phase during
which intuitive insights are developed, conjectures are made, and speculative outlines or
justifications are suggested. The latter is a proof-oriented phase, where the conjectures

and speculations are correct, and are made reliable by proving them. They claim “[...].
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The posing of conjectures is the most obvious mathematical activity that does not involve
proof.” (p. 6) Furthermore, weak standards of proof cause more difficulty, and they
claim:

Theoretical work should be explicitly acknowledged as theoretical and
incomplete; in particular, a major share of credit for the final result
must reserved for the rigorous work that validates it (p.10)

To this extent, Thurston’s believes that their article raises interesting issues that
mathematicians should pay more attention to, but it also perpetuates some widely held
beliefs and attitudes that need to be questioned and examined. According to Thurston, as
mathematicians, the correct question to ask is: “How do mathematicians advance human
understanding of mathematics?” He also adds: “We [mathematicians] are not trying to
meet some abstract production quota of definitions, theorems and proofs. The measure of
our success is whether what we do enable people to understand and think more clearly
and effectively about mathematics” (p.163).

In such a view, understanding and ways of thinking assume a crucial role: the
mathematician should put far greater effort into communicating mathematical ideas, and
to accomplish this he needs to pay much more attention to communicating not just his
definitions, theorems, and proofs, but also his ways of thinking. There is a need to
appreciate the value of different ways of thinking about the same mathematical structure;
mathematicians need to focus more energy on understanding and explaining the basic
mental infrastructure of mathematics, with consequently less energy on the most recent
results. This entails developing mathematical language that is effective for the radical
purpose of conveying ideas to people who do not already know them. Jaffe and Quinn’s
distinction (1993) regarding speculation and proving is considered by Thurston as a
division that only perpetuates the myth that our progress is measured in units of standard

theorems deduced. He goes on to state:

We have many different ways to understand and many different
processes that contribute to our understanding. We will be more
satisfied, more productive and happier if we recognize and focus on
this. (p. 173)
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On the other hand he wants to underline that his stressing the importance of

understanding is not any way a criticism of formal proof as such, and remarks:

I am not advocating the weakening of our community standard of
proof; | am trying to describe how the process works. Careful proofs
that stand up to scrutiny are very important...Second, | am not
criticizing the mathematical study of formal proofs, nor am I criticizing
people who put energy into making arguments more explicit and more
formal. These are both useful activities that shed new insights on
mathematics.” (p.169)

2.5.1.4 Other Contributions to New Interpretations of Proof

Another very interesting contribution to new interpretations of proof has been
facilitated by the “computer era.” Computers are employed to create or validate
enormously long proofs, some examples of which are the “four-color” theorem (Appel
and Haken) or “the solution to the party problem”(Radziszowski and MacKay); such
proofs require such long computations that they cannot possibly be performed or verified
by a human being. Because computers and computer programs are fallible,
mathematicians will have to accept that assertions proved in this way can never be more
than provisionally true (Hanna and Yahnke, 1996).

There has been talked of the zero-knowledge proof (Blum, 1986), originally
defined by Goldwasser, Micali and Rackoff (1985). Such a proof is an interactive
protocol involving two parties: a prover and a verifier. It enables the prover to provide to
the verifier convincing evidence that a proof exists without disclosing any information
about the proof itself. As a result of such an interaction, the verifier is convinced that the
theorem in question is true and the prover knows a proof, but the verifier has zero

knowledge of the proof itself and is therefore not in a position to convince others.

Hanna and Yahnke (1996) illustrate this concept taking an example from Koblitz
(1994):

Assume a map is colorable with three colors and the prover has a proof,
that is, a way of coloring the map so that no two countries with a
common boundary have the same color. The prover wants to convince
another person that there is a proof (a way of coloring the map) without
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actually revealing it, by letting the other person verify the claim in
another way.

The prover first translates the problem into a graph consisting of
vertices (countries) and edges (common boundaries). This means that
the prover has a function f: V — {R; B; G} that assigns the colors R
(red), B (blue), and G (green) to vertices (countries) in such a way that
no vertices joined by an edge have the same color. The prover also has
two devices: Device A, which sets each vertex to flash a color (R; B; or
G), and Device B, which chooses a random permutation of the colors
and resets each vertex accordingly. (A permutation might cause all
green vertices to switch to blue and all blue vertices to red, for
example).

The interaction between prover and verifier then proceeds as follows.
To convince the verifier that there is proof, the prover keeps the colors
hidden from the verifier’s view, but allows the verifier to grab one edge
at a time and see the color displayed at the two ends (the vertices) by
Device A. The verifier starts by grabbing any edge, looking at the
colors at the ends and noting that they are different. The prover then
uses Device B to permute the colors randomly; the permutation is
unknown to the verifier. After the permutation, the verifier again grabs
any edge and verifies that the colors at the ends are different. The
prover again permutes the colors. The two repeat these steps until the
verifier is satisfied that the prover knows how to color the map (has a
proof)

This interaction does not tell the verifier how to color the graph, nor
does it reveal any other information about the proof. The verifier is
convinced that the prover does have a proof, but cannot show it to
others. Perhaps the significant feature of the zero-knowledge method,
in fact, is that it is entirely at odds with the traditional view of proof as
a demonstration open to inspection. This clearly thwarts the exchange
of opinion among mathematicians by which a proof has traditionally
come to be accepted. (p. 881)

Another innovation introduced by computer scientists in collaboration with
mathematicians is represented by holographic proof (Cipra, 1993; Babai, 1994). Such a
proof consists of transforming a proof into a so-called transparent form that is verified by
spot checks, rather than by checking every line. The idea beneath the holographic proof is
that it is possible to rewrite a proof (in great detail, using a formal language) in such a
way that if there is an error at any point in the original proof it will be spread more or less
evenly throughout the rewritten proof (the transparent form). To determine whether the
proof is free of error, therefore, one need only check randomly selected lines in the
transparent form (Hanna and Yahnke, 1996). By using a computer to increase the number
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of spot checks, the probability that an erroneous proof will be accepted can be lessened as
desired.

All these developments lead practitioners and philosophers of mathematics
(Horgan, 1993; Krantz, 1994) to pose intriguing questions: in relation to zero-knowledge
and holographic proofs, for example, Babai (1994) asks the following questions: “Are
such proofs going to be the way of the future?”; “Do such proofs have a place in
mathematics?”; and, “Are we even allowed to call them proofs?” Many others questions
have been posed: Should mathematicians accept mathematical propositions, which have
only a high probability of truth, as the equivalent of propositions that are true in the
usual sense? If not, what is their status? Should mathematicians accept proofs that
cannot be verified by others, or proofs that can be verified only statistically? Can
mathematical truths be established by computer graphics and other forms of
experimentation? Where should mathematicians draw the line between experimentation
and deductive methods?

Such issues and many other questions are still topics of debate among
mathematicians and mathematics educators; for example on the Internet and in the Forum
section of The notices of the American Mathematics Society. Such debates are a
confirmation of the central role that proof still plays in mathematics. Ergo:

The point we must not lose sight of is that the existence of a new
consensus, even one with large remaining areas of disagreement, would
not create a situation which would differ in principle from that which
has prevailed up to now. [...] There has never been a single set of
universally accepted criteria for the validity of a mathematical proof.
Yet mathematicians have been united in their insistence on the
importance of proof [Hanna and Yahnke, 1996; p.884].

2.5.1.5 The role of proof

The incessant debate about what has to be considered a proof, or a formal proof, is
accompanied by another very important didactical issue, namely, the role of a proof.
Davis (1986) takes into consideration the role of proof, stating that it may play several
different roles. A proof may validate, it may lead to new discoveries, it can be a focus for
debate, and it can help eliminate errors. In the real world of mathematicians a proof is

never complete and furthermore it cannot be completed:
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There is a view of proof or a view of mathematics which | disagree
with and | think is a myth, which says that mathematics is potentially,
totally formalizable and, therefore, one can say, in advance, what a
proof is, how it should work, etc. (p.336)

Hanna (1990), makes a distinction between proofs that prove, and proofs that explain,
and considers both legitimate proofs, because both meet the requirements for a
mathematical proof, namely, they serve to establish the validity of a statement. In each
case they consist of statements that are either axioms themselves, or follow from previous
statements as a result of the correct application of rules of inference.

A proof that proves shows only that a theorem is true. It is concerned only with
substantiation (the proof the truth, validation), and that means, why-we-hold-it-to-be-so
reasons. Not all proofs have explanatory power; one can even establish the validity of
many mathematical assertions by purely syntactic means; with such a syntactic proof one
essentially demonstrates that a statement is true without ever showing what mathematical
property makes it true. A proof that explains, on the other hand, also shows why a
theorem is true, and that means, why-it-is-so reasons, therefore the term explain is used
only when the proof reveals and makes use of the mathematical ideas which motivate it.

What follows is Hanna’s example that compares a proof that proves, and a proof
that explains:

“Prove that the sum of the first n positive integers, S(n), is equal to n(n+1)/2”

A proof that proves
Proof by mathematical induction:

For n=1 the theorem is true.

Assume it is true for any arbitrary K.

Then consider:

S(k+1)= S(k)+(k+1):@+(n+1): (n+1)(n+2)

2
Therefore the statement is true for k+1 if it is true for k.
By the induction theorem, the statement is true for all n.
Now, this is certainly an acceptable proof: it demonstrates that a mathematical

statement is true. What it does not do, however, is show why the sum of the first n
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integers is n(n+1)/2, or what characteristic property of the sum of the first n integers
might be responsible for the value n(n+1)/2. (Proofs by mathematical induction are non-
explanatory in general).

Gauss’s proof of the same statement, however, is explanatory because it uses the
property of symmetry (of two different representation of the sum) to show why the
statement is true. It makes explicit reference to the symmetry, and it is evident from the
proof that its result depends on this property:

A proof that explains
Gauss’s proof is as follows:

S=1+ 2 + 3 +... +n

S=n+ (n-1)+ (n-2) +....... +1

25=(n+1)+(n+1)+(n+1)+...... +(n+1)=n(n+1)

_n(n+1)
2

Another explanatory proof of this same statement is, of course, the geometric

S

representation of the first n integers by an isosceles right triangle of dots; here the
characteristic property is the geometrical pattern that compels the truth of the statement.

We can represent the sum of the first n integers as triangular numbers (see Figure 1)

R B

1 1+2 1+243 1+2+3+4

Figure 1: The sum of the first n integers as triangular numbers

The dots form isosceles right triangles containing
S(n)=1+2+3+....+n dots
Two such sums S(n)+S(n) give a square containing n> dots and n additional dots because

the diagonal of n dots is counted twice. Therefore:
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2S(n)=n’+n

n>+n_n(n+1)
2 2

Another explanatory proof would be the representation of the first n integers by a

S(n)=

staircase-shaped area as follows: a rectangle with sides n and n+1 is divided by a zigzag

line (see Figure 2).

n+1
5
The whole area is n (n+1), and the 4
staircase-shaped area, 1+2+3+...+n 3
2
only half, hence @ 1

Figure 2: Representation of the first n integers by a staircase-shaped area

Both Gauss’s proof and the geometric representation show that one can adopt an
explanatory approach to proof in the classroom without abandoning the criteria of
legitimate mathematical proof and reverting to reliance on intuition alone. What one must
do rather, is to replace one proof of the non-explanatory kind, by another equally
legitimate proof that has explanatory power, the power to bring out the mathematical
message in the theorem (Hanna, 1990).

Furthermore a proof that convinces need not be a proof that explains: it is
certainly possible to be convinced that a statement is true without knowing why it is true.
The focus of an explanatory proof is clearly upon understanding, rather than upon
deductive mechanism. According to Hanna, understanding is much more than confirming
that all the links in a chain of deduction are correct, that in fact the completeness of detail
in a formal deduction may obscure rather than enlighten, and that understanding requires

some appeal to previous mathematical experience.
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Reuben Hersh (1993) distinguishes between the role covered by proof in
mathematical research and in the classroom. If we consider the field of mathematical
research, then, the purpose of a proof is to convince; in fact, according to the author, the
test of whether something is a proof is whether it convinces qualified judges. On the other
hand, in the classroom its purpose is to explain. Hersh goes on to say, “Enlightened use
of proofs in the mathematics classroom aims to stimulate the students’ understanding, not
to meet abstract standards of “rigor” or “honesty”. (p.389)”

A further distinction is made between the notion of proof in mathematical practice,
namely in the “real life of living mathematicians,” where it is defined as convincing
argument, as judged by qualified judges, and formal proof in the sense of formal logic.

Firstly, formal proof can exist only within a formalized theory. Formal proof has
to be expressed in a formal vocabulary, founded on a set of formal axioms, reasoned
about by formal rules of inference. But the passage from an informal, intuitive theory to a
formalized theory inevitably entails some loss or change of meaning. Consequently, any
result that is formally proved may be challenged: “How faithful is this statement and
proof to the informal concepts we are actually interested in?”

Secondly, for many mathematical investigations, full formalization and complete
formal proof, even if possible in principle, may be impossible in practice. These proofs
may require time, patience, and interest beyond the capacity of most mathematicians.

Very often in journal and textbooks proof functions as the last judgment, the final
word before a problem is put to bed. But the essential mathematical activity is finding the
proof, not checking after the fact that it is indeed a proof. At the stage of creation, proofs
are often presented in front of a blackboard, hopefully and tentatively. The detection of
an error or omission is welcomed as a step toward the improvement of the proof.

Hardy (1929), one of the most eminent English mathematicians of his day, wrote:

I have myself always thought of a mathematician as in the first instance
an observer, who gazes at a distant range of mountains and notes down
his observations. His object is simply to distinguish clearly and notify
to others as many different peaks as he can. There are some peaks,
which he can distinguish easily, while others are less clear. He sees A
sharply, while of B he can obtain only transitory glimpses. At last he
makes out a ridge which leads from A and, following it to its end, he
discovers that it culminates in B. B is now fixed in his vision, and from
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this point he can proceed to further discoveries. In other cases perhaps
he can distinguish a ridge, which vanishes in the distance, and
conjectures that it leads to a peak in the clouds or below the horizon.
But when he sees a peak, he believes that it is there simply because he
sees it. If he wishes someone else to see it, he points to it, either
directly or through the chain of summits that led him to recognize it
himself. When his pupil also sees it, the research, the argument, the
proof is finished. (p.18)

Hersh, recalling Hardy’s words claims that all real life proofs are to some degree
informal. The formal logic picture of proof is not a truthful picture of real-life
mathematical proof, to this extent he perlustrates three different meanings of proof:
1) As the English word “prove” it means: test, try out, and determine the true state of
affairs.
2) In mathematics, “proof” has two meanings, one in common practice; the other
specialized in mathematical logic and in philosophy of mathematics:
The first one, the “working” meaning is:

An argument that convinces specialized judges
The second mathematical meaning, the “logic” one, is:

A sequence of transformations of formal sentences, carried out according to the

rules of the predicate calculus.
Related to the role of proof in classroom, Hersh claims it is not to convince; convincing is
no problem. Students are all too easily convinced. What a proof should do for the student
IS to provide insight into why a theorem is true. He categorizes two opposing views on
the role of proof in teaching: he defines them as Absolutism and Humanism.

The Absolutist view is characterized by the idea that “without complete, correct
proof, there can be no mathematics.” Mathematics in such an approach is seen as a
system of absolute truths independent of human construction or knowledge; therefore,
mathematical proofs are external and eternal. Proofs are to admire, hopefully to
understand, but not to play with, not to break apart. Hersh defines the figure of the
Absolutist teacher as the one who tells the student nothing except what he will prove (or
assign to the student to prove). The proof chosen will be either the most general, or the
shortest. He will not be concerned about how explanatory the proof is, because
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explanation is not the purpose of the proof, but it is certification: admission into the
catalog of primarily absolute truths.

In the Humanist view “Proof is complete explanation.” Proofs are not obligatory
rituals. In brief, the purpose of proof is — understanding. The choice of whether to present
a proof as is, to elaborate it, or to abbreviate it, depends on which is likeliest to increase
the student’s understanding of concepts, methods, and applications.

2.5.2. Proof as process
2.5.2.1. Harel’s Theory of Proof Schemes

Harel (1998) defines the process of proving in the following way:

By “proving” we mean the process employed by an individual to remove or
create doubts about the truth of an observation. (p. 241)

Ascertaining and persuading are the two sub processes included in the process of
proving:

Ascertaining is the process an individual employs to remove her or his own
doubts. Persuading is the process an individual employs to remove others’
doubts about the truth of an observation. (p. 241)

One of the main concerns of Harel’s research is to understand and describe how
individuals prove or justify, more specifically, how students ascertain for themselves or
persuade others of the truth of a mathematical observation. To this extent a classification
of Proof Schemes has been created, where the proof scheme has been defined as: A
person’s proof scheme consisting of what constitutes ascertaining and persuading for
that person (p.244).

The author stresses that the definitions of the process of proving and proof scheme
are deliberately psychological and student-centered; each of the categories of the proof
schemes in the classification represents a cognitive stage, an intellectual ability, in
students’ mathematical development, and all have been derived from the observations of
the actions taken by actual students in their process of proving.

What characterizes the construction of the proof schemes is the individual’s scheme
of doubts, truths, and convictions, in a given social context. The entire system is

constituted by three main categories of proof schemes, each of them containing several
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subcategories. The first category is represented by the External conviction Proof
Schemes: “When the formality in mathematics is emphasized prematurely, students
come to believe that ritual and form constitute mathematical justification. When students
merely follow formulas to solve problems, they learn that memorization of prescriptions,
rather than creativity and discovery, guarantee success. And when the teacher is the sole
source of knowledge, students are unlikely to gain confidence in their ability to create
mathematics...schemes by which doubts are removed by a) the ritual of the argument —
the ritual proof scheme; b) the word of an authority — the authoritarian proof scheme; or
c) the symbolic form of the argument - the symbolic proof scheme” (p.246).

The second category is represented by the Empirical Proof Schemes: “In an empirical
proof scheme, conjectures are validated, impugned or submitted by appeals to physical
facts or sensory experiences” (p.252).

In the Empirical Proof Scheme it is possible to distinguish between two kinds of
schemes: The inductive empirical proof scheme and the perceptual empirical proof
scheme. A person possesses an inductive proof scheme when they ascertain for
themselves and persuade others about the truth of a conjecture by quantitatively
evaluating™ the conjecture in one or more specific cases. The perceptual proof scheme is
characterized by perceptual observations made by means of rudimentary mental images —
images that consist of perceptions and a coordination of perceptions, but lack the ability
to transform or to anticipate the results of a transformation, “The important characteristic
of rudimentary mental images is that they ignore transformations on objects or are
incapable of anticipating results of transformations completely or accurately” (p.255).

The third category is represented by the Analytical Proof Schemes; in this case the
conjectures are validated by means of logical deductions. By logical deduction is meant
much more than what it is commonly referred to as the “method of mathematical
demonstration” — a procedure involving a sequence of statements deduced progressively
by certain logical rules from a set of statements accepted without proofs (i.e., a set of

axioms).

19 g., direct measurements of quantities, numerical computations, substitutions of specific numbers in
algebraic expressions, etc.
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Two subcategories belong to this category are: the transformational proof scheme, and
the axiomatic proof scheme.

The Transformational proof scheme belongs to the third category and it is so
defined: “Transformational observations involve operations on objects and anticipations
of the operations’ results. They are called transformational because they involve
transformations of images- perhaps expressed in verbal or written statements- by means
of deduction” (p.258). The following episode is an example of transformational proof
scheme:

Amy demonstrates to the whole class how she imagines the theorem,
“The sum of the measures of the interior angles in a triangle is 180°.”
Amy says something to the effect that she imagines the two sides AB
and AC of a triangle ABC being rotated in opposite directions through
the vertices B and C, respectively, until their angles with the segment
BC are 90° (Figure 3a, b). This action transforms the triangle ABC into
the figure A’BCA,”” where A’B and A’’C are perpendicular to the
segment BC. To recreate the original triangle, the segments A’B and
A”C are tilted toward each other until the points A’ and A” merge back
into the point (Figure 3c). Amy indicates that in doing so she “lost two
pieces” from the 90° angles B and C (i.e. angles A’BA and A’’CA) but
at the same time “gained these pieces back” in creating the angle A.
This can be better seen if we draw AO perpendicular to BC: angles
A’BA and A”CA are congruent to angles BAO and AOC, respectively
(Figure 3d)

A A A A

B C C B d C
Figure 3: Amy's dynamic representation
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The interpretation given by Harel is the following: Amy views a triangle as a
dynamic entity; it is a product of her own imaginative construction, not of a passive
perception. Her operations were goal oriented and intended the generality aspect of the
conjecture. She transformed the triangle and was fully able to anticipate the results of the
transformations, namely, that the change in the 90° angles B and C caused by the
transformations is compensated for by the creation of the angle A. All this leads to her
deduction that the sum of the measures of the angles of the triangle is 180°.

The Transformational Proof Scheme possesses two different cognitive levels: the
internalized proof scheme, and the interiorized proof scheme.

According to Harel, “An internalized proof scheme is a transformational proof
scheme that has been encapsulated into a proof heuristic — a method (of proof) that
renders conjectures into facts” (p. 262). Harel gives the following example: “to prove two
segments in a given figure are congruent, students commonly look for two congruent
triangles that respectively include the two segments” (p. 262). Such a proof heuristic is
abstracted by the students from the repeated application of an approach they have often
found to be successful.

Harel continues, “An interiorized proof scheme is an internalized proof scheme that
has been reflected upon by the person possessing it so that they become aware of it. A
person’s awareness of the proof scheme is usually observed when the person describes it
to others, compares it to other proof schemes, specifies when it can or cannot be
used...by definition, the interiorization process cannot occur unless the internalization
process has taken place (p. 265).

The last component of the Analytical Proof Scheme is the Axiomatic Proof Scheme,
which can be Intuitive, Structural, or Axiomatizing. Harel determines, “When a person
understands that at least in principle a mathematical justification must have started
originally from undefined terms and axioms (facts, or statements accepted without proof),
we say that person possesses an axiomatic proof scheme” (p.273).

The intuitive-axiomatic proof scheme is possessed by a person who is necessarily
aware of the distinction between the undefined terms, such as “point” and “line,” and
defined terms, such as “square” and “circle,” and between statements accepted without
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proof, and ones that are deducible from other statements. However, Harel clarifies: “He
or she, however, may be able to handle only axioms that correspond to her or his
intuition, or ideas of self-evidence, such as foranyaand b in F, a + b =b + a in relation
to her or his experience with real numbers, or one and only one line goes through two
points in relation to her or his imaginative space” (p.273).

A structural proof scheme is an axiomatic proof scheme by which one thinks of
conjectures and theorems as representations of situations from different realizations that
are understood to share a common structure characterized by a collection of axioms.

According to the author the structural proof scheme is a cognitive prerequisite to
the axiomatizing proof scheme — a scheme by which a person is able to investigate the

implications of varying a set of axioms, or to axiomatize a certain field.

2.5.2.2 Cognitive Unity of Theorems

The definition of Cognitive Unity was born as product of a study concerning the
difficulties met by the students in the approach to proof. When confronted with students’
statement of “empty mind” when they face a proof, Boero along with other researchers
underline the importance that beginners’ proving must be rooted in the argumentative
activity consisting in the search and elaboration of arguments for the plausibility of the
conjecture (see Boero, Garuti & Mariotti, 1996; Garuti, Boero, Lemut & Mariotti, 1996;
Mariotti et al., 1997; Boero, Garuti & Lemut, 1999).

The implications for the research are:

e ldentification of possible kinds of inference intervening in the conjecturing
process and their roots (within the school and outside of the school);

e Investigation about possible links between the identified kinds of inference during
the conjecturing phase, and strategies during the subsequent proving phase, in
particular as this concerns the classic “analysis” and “synthesis” methods.

In such a context the “cognitive unity of theorems” (Garuti et al., 1996) has been defined

as that peculiar situation where some arguments, produced for the plausibility of the
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conjecture during the conjecture production (or appropriation) phase, become
ingredients for the construction of proof.

According to Garuti’s initial intuition, cognitive unity of theorems concerns the
possible continuity between some aspects of the conjecturing process and some aspects of
the proving process: first of all, the arguments. During the conjecturing phase some
relations, known properties, evidences, general rules, etc. can be produced or evoked as
reasons for the plausibility of the conjecture. Some of these arguments can intervene in
the proving process as relevant arguments to support further findings (e.g.
generalizations), or as components of the final deductive reasoning. But cognitive unity
(as *“that particular situation...) concerns also those conditions that allow some
arguments, produced during the conjecturing phase, to be exploited during the proving
phase.

The cognitive unity is characterized by:

e Continuity of the mathematical frame (if this continuity is not kept, most
arguments produced in the conjecturing phase are not recyclable in the proving
phase: consider conjecturing within a synthetic geometry frame and proving
within an analytic geometry frame).

e The continuity of the exploration strategies and heuristics (if this continuity is not
kept, arguments which are relevant in a given exploration during the conjecturing
phase may become useless, or even be forgotten, in another kind of exploration
during the proving phase).

e The continuity of the external representation (an important change in the external
representation between the conjecturing phase and the proving phase can make
unavailable all the arguments that are strictly related to a peculiar representation —
for instance, visual arguments related to graphs of functions can become

unavailable when we move to use algebraic language).

It is important to clarify that *“cognitive unity of the theorems” concerns the
arguments and related conditions of continuity in the transition from conjecturing to

proving, not the possible “structural” analogy, or “continuity” between the argumentation
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during the different phases of the activity that springs from the search of a conjecture to
the text of the proof.

The problem from a structural point of view has been faced by Pedemonte (2002)
who distinguishes between “reference system continuity” (the one considered by Garuti
et al., 1996; what has been defined as “cognitive unity of theorems”) and the “structural
continuity” concerning the structure of argumentation, according to Toulmin’s model. In
particular, very frequently it happens that the “reference system continuity” is kept, while

the “structural continuity” is broken. The following example shows such a situation:

The example concerns an abductive process in the phase of the
conjecturing and/or early proof construction. In this case, it is evident
that the search for a general condition under which the regularity under
scrutiny is a possible consequence, is guided by the need of providing a
theoretic argument in the perspective that it becomes a premise for a
deductive step.

As we will see in the protocol, the break in structural continuity
consists of the shift

...from a creative process:

given an argument B (an experienced regularity)

both an argument A (a condition for regularity)

and a possible inference A — B are searched for.

...to a deductive enchaining:

if A, then B, because...

The shift implies inverse temporal movements between B and A in the
two phases of the activity:

From B as a possible consequence, to A as a possible case;

Then,

From A to B through deduction.

Structural continuity is broken as a consequence of a cultural need,
which ensures both the abductive search for arguments and their final
deductive enchaining. We can remark that cognitive unity (as
“reference system continuity”) is kept.

Here there is an exemplary protocol illustrating these phenomena.
Undergraduate mathematics students were asked to produce (and
prove) a conjecture that generalizes the elementary theorem: “The sum
of two consecutive odd numbers is divisible by four.” About one half of
students produced the conjecture “The sum of an even number P of
consecutive odd numbers is divisible by 2P.” Only one third of them
produced a valid, rigorous proof for this conjecture (cfr. Boero et al.,
2002).

Elena (a clever student) performs the algebraic proof of the given
theorem “(2K+1) + (2K+3) = 4K + 4 = 4 (K+1)”; then she writes:
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OK, this formally proves that the theorem that | must generalize is true,
but it does not explain why it is really true. It 1 want to get a
generalization, I think that | must try to understand better why it is true.
3+5=8

7+9=16, double of eight

11+13=24 double of 12;

111+113=124

19+21=40

109+111=220

Two odd consecutive numbers...l consider the even number between
them.

(2s-1) is the preceding odd number

(2s+1) is the following number.

Now | understand: the sum is 4s.

This might be a particular case of the sum of

... +28-3+2s-1 + 2s+1 +25+3+...

A sum of couples of odd numbers...it should make 4s multiplied for
the number of couples, the mechanism of cancellation is the same!
Strong: | notice that it is like the anecdote about the young Gauss!

(The anecdote had been discussed during the course, following M.
Wertheimer’s interpretation in his book “Productive thinking”).

The conjecture is: “The sum of an even number of consecutive odd
numbers is divisible by the double of the number of added numbers.’
The proof might be:

I represent the sum of couples of odd numbers as balanced couples
“even intermediate — number, even intermediate + number.”

Their sum repeats the double of the intermediate even number as many
times as the number of couples (underlining in the original). Then it is
true that the sum is divisible by the double of the even number of
couples.

2.5.3. The teaching of proof

The great changes in the views and interpretations of proof and its role have also
influenced the approach to teaching it. The late 50’s were characterized by the entrance
of the “New Math”, influenced by the work of Bourbaki; until that moment the teaching
of proof in mathematics education was limited to geometry, where a proof was more a
ritual to be followed than a source of deeper mathematical understanding. The New
Math-influenced mathematics curriculum introduced a new emphasis on axiomatic
structure and proof, and was seen going well beyond geometry: this reform, like others,
aimed at the improvement of mathematical understanding. Unfortunately, the “new math”
failed the goal concerning proof; its demise was due to an exaggerated emphasis on

formal proof.
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After this decline, several other approaches emerged: from instruction by
discovery to cooperative learning, learning through problem -solving to classroom
interaction. All of these approaches exercised significant influence on the curriculum
even though none of them gained universal acceptance.

Among the most influential theories of mathematics education we may recall
Constructivism in its various forms. The basic tenet of this approach is that knowledge
cannot be transmitted, but must be constructed by the learner (von Glasersfeld, 1983;
Cobb, 1988; Kieren and Steffe, 1994). Such a theory has been at the center of several
misinterpretations; many have seen in it an approach that undermines the role of the
teacher in the classroom; at precisely the same time a number of experimental studies
have just confirmed the importance of the role of the teacher. These studies have shown
the value of approaches such as debating, restructuring, and pre-formal presentation, all
of which posit a crucial role for the teacher in helping students to identify the structure of
a proof, to present arguments, and to distinguish between correct and incorrect
arguments.

In tandem with approaches to teaching proof through classroom debate, we may
utilize Alibert (1988), who designed an experimental study in which teachers had
students engage in debate to assist in the understanding of a mathematical justification.
His concern is about mathematical productions of many students at the beginning of the
first year in the university, who often seem to mimic the writing of the teacher.
According to Alibert, syntactic characteristics often seem to prevail over semantic
characteristics; therefore the control of the meaning does not appear to be a primary
purpose of the students’ texts.

What the author wants to underline is that meanings are not used as a means of
controlling the results of algorithms. During his observations he noticed that for the
students proof is usually only a formal exercise to be completed for the teacher, but there
IS no deep necessity for it; to this extent he designed an experimental teaching method
applied to teach mathematics in the first year at the University, and set in place a

particular theoretical framework. This framework is based on
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a) “théorie des situations didactiques” (Brousseau, 1986); b) plurality of conceptual
settings (Douady, 1986); c) the development of a sense of the need for proof generated by
the role of contradictions (Balacheff, 1982); d) the importance of the role of the group of
students for the construction of meaning (Bishop, 1985; Balacheff & Laborde, 1985); e)
meta-mathematical factors, such as systems of representation in mathematics, and the
way mathematics is learned as very important tools in the learning process (Schoenfeld,
1983); and f) the constitution of a “learner’s epistemology,” meant as the set of problems
and situations the single student builds during the constitution process of a particular
concept.

The author believes that the necessity and the functionality of proof can only
surface in situations in which the students meet uncertainty about the truth of
mathematical propositions. According to this idea the generation of scientific debate and
how it unfolds in the classroom takes place as follows:

First step: The teacher initiates and organizes the production of scientific statements by
the students. These are written on the blackboard without any immediate evaluation of
their validity.

Second step: The statements are put to the students for consideration and discussion.
They must come to decisions about their validity by taking a vote; each opinion must be
supported in some way, by scientific argument, by proof, by refutation, by counter-
example...

Third step: The statements that can be validated by a full demonstration to become
theorems; those found to be incorrect are preserved as “false statements” associated with
appropriate counter-examples. The students’ lecture notes are observed to contain these
two kinds of statements. (p.32)

(For detailed examples, see Alibert, 1988; p.32)

In this form of “scientific debate” the proof arguments made by the students are not
addressed to the teacher but to the other students; and proofs are distinguished between
proofs to convince and proofs to show. In the former, arguments are produced to convince
someone (such as another student) of something that is not already a part of his or her
institutionalized knowledge; in the latter the target is to show someone (such as the
teacher) that we have reached some knowledge that he already possesses; the activity

involved in the first process is fundamentally different from the one involved in the



69

second, in such a way that it is able to produce a deepening of knowledge and its
meaning. In this situation the student, therefore, tries to convince others, and himself or
herself at the same time, of the truth of a conjecture that has been formulated (by other
students or by him/herself) in answer to some problem the whole group of students is
trying to solve; they all know that the conjecture is not necessarily true, and in particular
that it is not yet established as an item of institutionalized knowledge (‘co-didactic
situation’). This process of interactions and conflicts between the students’ conception
will enhance the need for clarifications of contradictions leading to an emerging need for
proof (See Alibert, 1988, for further details).

Other researchers have investigated the use of classroom debate in order to teach
proof and its uses. Balacheff (1988) talks about 3-stage method (débat socio-cognitif): in
such a procedure the teacher guides the students through discussions in which they come
up with a conjecture, perform appropriate measurements to test it, and then create a proof
in support of their conjecture.

Further studies have focused on the meaningfulness of a proof, namely,
Movshovitz-Hadar (1988) and Leron (1983) have shown that there are a number of
techniques to make proofs more meaningful to students. For example, the same theorem
may be proved in several different ways in the same class; or a proof can be restructured
to make its overall structure clear, before each step is looked at in detail. A proof by
contradiction can be avoided, when possible, replacing it with a constructive one.

Movshovitz-Hadar insists on the importance of the fact that the more stimulating a
presentation of a theorem is the more successful is the setting of the stage for the coming
proof:

Very often in going through a formal proof, particularly those suffering
from the "let us define a function" syndrome (Avital, 1973) the student
feels treated shabbily. The origin of the proof remains a mystery and
the student is left with a frustrated feeling of not being wise enough,
not only not as wise as the person who invented the proof, but not even
wise enough to understand how the inventor came up with the idea. The
attitude towards mathematics, which is encouraged this way, is: "I'll
never understand it, it is not for me™ (p.18)
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In Movshovitz-Hadar’s article (1988), she presents two theorems and several
ways to present them and their proofs. The basic point is to trigger students' intellectual
curiosity in order to make them wonder: "HOW COME???" in reading or hearing a
statement, in contraposition with a common reaction translated by "SO WHAT???" In
this sense if mathematics teachers agree to give first priority to thought-provoking
presentations, priority should be given to the ones causing some kind of surprise.

Concerning this argument | believe it is beneficial to examine one of the examples
given by the author, regarding a property of prime numbers. The issue is introduced by
Movshovitz-Hadar through what she defines a surprising imposition. She writes:

<<Honsberger (1970) tell us that Sundaram's Sieve was invented in 1934 by a
young East Indian student, named Sundaram, as an instrument for sifting prime numbers

from positive integers. The Sieve consists of the infinite table represented by Table 1.
Table 1: Sundaram’s Sieve

4 7 10 13 16 19 22 25
7 12 17 22 27 32 37 42
10 17 24 31 38 45 52 59
13 22 31 40 49 58 67 76
16 27 38 49 60 71 82 93

The remarkable property of this table is: If N occurs in the table, then 2N+1 is not a
prime number; if N does not occur in the table, then 2N+1 is a prime number.>> (Ibid.
p.75).

It is surprising because even though the entries in the table have immediately visible
additive properties, they do not have anything that ties them with primality; basically a
multiplicative property. As suggested by Mason et al. (1985), mathematical thinking is
provoked by a gap between new impressions acting on old views (p.15); in the prime
number case, it is the gap between a collection of arithmetic progressions having an
obvious regularity resulting from their additive property, and the fact that prime numbers
are defined by a multiplicative property and are known to have little regularity.
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Three different presentations of the proof are taken into consideration:

A formal proof

In Table 1 the first row comprises all the terms of the infinite progression beginning with
4,7, 10... This progression is also used to generate the first column. Succeeding rows are
then completed so that each consists of an arithmetic progression, such that the common
differences in successive rows are the odd integers 3, 5, 7, 9, 11... Sundaram’s claim is: If
the number N occur in this table, then 2N+1 is not a prime number; if N does not occur in
the table, then 2N+1 is a prime number. Honsberger (Ibid. pp.84-5) proceeds with the
proof as follows:

Proof: We begin by finding a formula for the entries in the table. The
first number in the nth row is

4+(n-1)3 = 3n+1
The common difference of the arithmetic progression comprising the
nth row is 2n+1; hence the mth number of the nth row is

3n+1+(m-1)(2n+1) = (2m+1)n + m.
Now, if N occurs in the table, then N = (2m+1)n + m for some pair of
integers m and n. Therefore,

2N+1 = 2(2m+1)n+2m+1 = (2m+1)(2n+1)
is composite.
Next, we must show that, if N is not in the table, 2N+1 is prime; or,
equivalently, if 2N+1 is not prime, N is in the table. So, suppose 2N+1
= ab, where a, b, are integers greater than 1. Since 2N+1 is odd a and b
must both be odd, say

a=2p+1, b=2qg+1
so that

2N+1=ab=(2p+1)(29+1)=2p(2q+1)+2q+1
and

N=(2q+1)p + q.
But this means N appears as the gth number of the pth row in the table.
We conclude that N occurs in the infinite table represented by the Table
2 if 2N+1 is not a prime number.

Movshovitz-Hadar declares that every step in this proof is clear; Sundaram's sieve
is admittedly valid, and yet the manner in which the Indian student came up with his
remarkable idea remains altogether mysterious. Probably, many readers feel a bit
disappointed after going carefully through this proof for we still have no answer to the
question, what do these arithmetic progression have to do with primality? This proof does

not make us any wiser. The tension caused by the surprising declarative statement is not
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relieved (This is a proof that Hanna would define a proof as one that proves, not that

explains).

Let us continue with the second approach.

A gap-bridging proof

1.

The claim we wish to prove concerns the odd numbers. Let us transform every
number N occurring in Table 1 to the corresponding K satisfying K=2N+1, as
shown in Table 2. Consequently, the statement to be proved becomes: K occurs in

the infinite table represented by Table 2 if K is not prime.
Table 2: Sundaram’s Sieve Transformed

9 15 21 27 33 39 45 51
15 25 35 45 55 65 75 85
21 35 49 63 77 91 105 119
27 45 63 81 99 117 135 153
33 55 77 99 121 143 165 187

As any odd integer is a product of two odd integers, the infinite multiplication
table of all pairs of odd integers (Table 3), must contain all primes except 2.

By definition, all prime numbers (except 2) occur in the first row and column of
this table, and no prime number occurs elsewhere. In addition, any odd composite
integer must occur at least once outside of the first row and column.

On the other hand, if we omit the first row and the first column of Table 3, the
remainder is identical with Table 2. This is because, like any integer-
multiplication table, Table 3 is, in fact, a set of row arithmetic progressions with
the marginal numbers as their respective common differences.

We conclude that Table 2 contains all odd composite integers and no primes. In
other words: For any odd integer K, if K is prime, then it does not occur in Table
2, and if K does not occur in Table 3, then K is prime. (Q.E.D.)
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Table 3: Multiplication table of odd integers

3 5 7 9 11 13 15 17
3 5 7 9 1 13 15 17
9 15 21 27 33 39 45 51
15 25 35 45 55 65 75 85
21 35 49 63 77 91 105 119
27 45 63 81 99 117 135 153
11 |11 33 55 77 99 121 143 165 187

© N o w | X
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This proof bridges the gap, created by the statement of the theorem, between the
arithmetic progressions and prime numbers. The bridging takes place at the multiplication
table of odd numbers in step 4 where arithmetic progressions and primes intersect. This
proof may be called "responsive™ since it responds to the stimulation created by the
theorem. In general, responsive proofs usually leave most of the audience with an
appreciation of the invention, along with a feeling of becoming wiser.

The last one considered by the author is:

A bottom-up development of the proof (and of the theorem)

In this case we suppose we have no idea whatsoever about Sundaram's Sieve. We will
consider the mainline of a sequence of tasks leading gradually to the discovery of the
sieve.

The goal: At the end of this sequence you will have discovered an algorithm
separating all primes from the positive integers.

a) Recall the definition of a (natural) prime number and a (natural) composite number.

b) What property do all prime numbers except 2 have in common? (Answer: All are odd).
c) In view of the previous finding, how can the goal be simplified? (Answer: In order to
separate the primes from the positive integers it is sufficient to separate the odd-primes

from the odd-positive integers).
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d) Construct the multiplication table of the odd positive integers up to 17 (Result: See

table 3 above).

Consider this table as representative of the infinite table of the products of all pairs of odd

integers. Study its properties:

1. What property do all entries in the infinite table have in common? (Answer: All
are odd integers as any odd number is a product of at least one pair of odd
numbers).

2. Where do all prime numbers occur in the infinite table? (Answer: In the first row
and column).

3. Where do only composite numbers occur? (Answer: In the complementary part of
the table, that is in all but the first row and column).

e) If we omit the first row and the first column of the infinite multiplication table of odd
positive integers, what kind of integers are left in the reduced table? (Answer: The
reduced table contains all composite odd numbers and only them).

f) Restate your findings in terms of a conditional statement:

If an odd integer K occurs in the reduced table, then...

If and odd integer K does not occur in the reduced table, then...

g) Let K designate any odd integer, then K=2N+1 for some integer N. Transform the
reduced table by replacing K with the corresponding N and restate your summary in
term of N. (Ans.. The transformed table coincides with Table 1 and above the
statement is Sundaram's: If N occurs in the table, then 2N+1 is not a prime and vice
versa.)

h) Based upon the finding in step "g" create a flow chart describing an algorithm by
which you can now determine for any given positive integer N whether or not N is

prime (Result: For an elaboration of this task see Hadar & Hadass, 1983).

Clearly, this task-sequence proceeds in a bottom-up fashion, from previous knowledge
about prime numbers and odd integers, to the discovery of Sundaram's Sieve. It is
noteworthy that the theorem is stated at the end of the process, at which stage it has

already been proven. The sequence, therefore, is constructive (p.16).
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The “structural method” (Leron, 1983) is an alternative method to the original
step-by step, “linear” way of presenting proofs that proceeds unidirectionally from
hypotheses to conclusions, considered by Leron as probably well suited for securing the
validity of proofs, but unsuitable for mathematical communication. The aforementioned
method aims to increase the comprehensibility of mathematical presentations while
retaining their rigor; and its basic idea is to arrange proofs in levels, going from the top to
the bottom. Each level consists of short autonomous “modules,” and each module
embodies one major idea of the proof.

The top level gives a precise, but in very general terms, main line of the proof; the
second level elaborates on the generalities of the top level, supplying proofs for
unsubstantiated statements, details for general descriptions, specific constructions for
objects whose existence has been merely asserted and so on; the procedure continues
down where each level supplies more details. Leron writes: “One may think of the
structural approach as viewing proof (which is at ground level) from a tall building.
When viewing from the top we see the whole proof at a glance, but only in vague outline,
no details can be discerned. As we descend the levels of the building, a zooming effect
occurs: our view encompasses smaller and smaller segments of the proof, but these are
seen with more and more clarity” (p.175).

The following pictures represent Leron’s pictorial comparison of the two
approaches: the linear method is represented by an oriented line segment; the structural

method by a “structure diagram.”

Beginning @ ® end

(hypotheses) (conclusion)

Figure 4: The linear method
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—

Figure 5: The structural method

The top level is normally very short and free of technical details (i.e., notational,
computational, etc.,); the bottom level is quite detailed, resembling in this respect the
standard linear proof. The intermediate levels entail the role of facilitating a smooth
transition from the generalities of the top level to the details of the bottom, from the
global to the local perspective; and in each module (box) the argument flows linearly, but
it is very short and “flat,” therefore it can again be grasped at a glance.

What follows is an example chosen from amongst the several ones given by Leron
concerning Algebra, Calculus, Geometry, Linear Algebra and so on; it compares the two
aforementioned structures.

A Theorem on Limits

Theorem: if lim y_af(x) =L and lim x_ag(X) = M, then lim y_a f(x) g(x)= LM.

Proof in the linear style (taken from a real calculus textbook).

Let € > 0 be given and let n be the smaller of Jel3 and el3(1+ L]+ |M] ). Since lim
xa T(X) = L, there exists a 6; > 0 such that |f(x)-L|< n whenever 0<|x-al< &
Similarly, there exists a 6, >0 such that |g(x)-M < n whenever 0< | x-a| < 8,. Let & be
the smaller of 8, and &,. Now if 0< | x-a| < 5, then 0< | x-a | <&;, i=1,2 and so we have:
[f09900-LM = [L@e)-M)  +M(FQ-L)+(F-L)@-M) < LT [ (geo-m) [+
M (F)-L) |+ (09-L) | | (@x)-M) | <
IL|e3@+|L|+IMD+IM|eB@+|L|+IM)+Vel3 Vel3<el3el3e/3=¢ (ged.)

Fortunately, many instructors know better. They let the student in on the secret of

how these mysterious quantities n and & are actually discovered. But in so doing the
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direction of the argument is reversed, and eventually they have to abandon this
unorthodox discussion and recast the official proof in more-or-less the form above (or at
least mention that this recasting should be done).

The argument in the following structured proof resembles this informal discussion
but at the same time it is quite formal and rigorous. Thus the structural approach brings
closer the human process and the formal-deductive one (p.179).

A structured proof
Level 1. Let € >0 be given. We find (in level 2) a >0 such that O<\f(x)g(x)-

LM | <¢ whenever 0< | x-a | <5. Thus the theorem is proved.

In the Elevator. We have to show that the expression |f(x)g(x)-LM | can be made

as small as we please. To this end, we try to bound it by an expression we know can be

made small. Such expressions are |f(x)-L g(x)-M|and multiples of these by a

constant and by each other. After some trial and error the following expression emerges:

(*) f()9(x)-LM=L(g(x)-M)+M(f(x)-L)+(f(x)-L)(9(x)-M).
Level 2. Using the equality (*) we have:

[f)g()-LM| = [L(g(x)-M)+M(Fx)-L)+F)-L)gx)-M) | < L] |(gx)-M)[+
M (Fe0-L) [+] (F0-L) | | (@(x)-M) .

We find a 6>0 (in Level 3) such that whenever 0< | x-a | <5, each of the terms on the

right-hand side is smaller than /3. Thus the left-hand side is smaller than &, as required.

In the Elevator. To get |L| | g(x)-M| < &/3, we try to make |g(x)-M|< /3 |L].
However, there is a bug here: this only works if L = 0. One way of correcting this bug is
to replace L] by 1+ |L|. The case of |M| \f(x)-L| is similar. Finally, to get |f(x)-
L] | g(x)-M | < ¢/3, we make each of the factors smaller than /3.
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Level 3. We choose positive 33, 82, 83, 04 such that the following hold:

| f(x)-L | < e/3(1+|M|) whenever 0<|x-a|<d;;
|g(x)-M|<a/3(1+\L|) whenever 0<|x-a|<§;;

| f(x)-L | <vel3 whenever 0<|x-a|<&s;
‘g(x)-M\<\/g/3 whenever 0<|x-a|<8,.

(Such 6;’s exist since L and M are the limits of f(x) and g(x) respectively). Now let 5 be
the smallest of 8y, 8,, 83, 84, S0 that if 0<|x-a|< & then 0<|x-al< &, i=1,2,3,4. Then
whenever 0<|x-al< &, the expressions |L||g(x)-M|, [M]||f(x)-L|,and |f(x)-

L] | g(x)-M | all become smaller than /3. Thus § satisfies the requirements of Level 2.

Remark. As seen from this example, structural proofs take longer to deliver, but (I
believe) are shorter to digest. In fact, they are longer because they contain more
information (namely, the structure of the proof), and it is this very information that makes
them more learnable, illuminating and humane. Thus switching to structured proofs we
simply agree to share with our students (or readers) more of what we know about the
proof. And it is my belief that the loss in economy is more than balanced by the gain in
learning.

According to Leron, the use of a structural style allows us to better communicate
the ideas behind the formal proofs; namely, the main idea is given in the top level,
auxiliary ideas are packaged in autonomous modules, and the interconnections between
the separate ideas are made explicit through the structural diagram. Furthermore, using
such an approach it is possible to be a bit more specific about what is meant by the “main
idea” of a proof. The main idea often lies in the construction of a new, intermediate
object, called by the author the pivot, to mediate between the hypotheses and the
conclusion. On the contrary, in the linear approach the pivot is treated poorly (from the
learner’s point of view) and its potential for revealing the architecture of the proof is

wasted. On the contrary, it is here where the proof most resembles the pulling of a rabbit
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from a hat. The pivot is usually introduced near the beginning of the proof by a bare
statement of its definition, which often appears extremely bizarre and complicated. Such
definitions have an intimidating, even paralyzing, effect on many students when
introduced too abruptly.

Another approach studied by Blum and Kirsh (1991), investigated teaching
students to understand and produce proofs using what they call a preformal presentation.
In such an approach the teacher leaves out formal details while explaining the overall
structure of a proof.

Another very important issue that has been deeply talked about is the role of the
teacher in the process of teaching-learning-understanding proofs. Lampert, Rittenhouse
and Crumbaugh (1994) described, and positively impressed, a class of fifth graders who
were engaged in group discussion where the context of instruction was such that it was
possible, as they put it, “for the teacher to step out of the role of validator of ideas and
enter into the role of moderator of mathematical arguments.”

Another teaching experiment conducted with 4™ graders (M.G. Bartolini Bussi, et
al., 1999), in the field of experience of gears, evidenced that, given a suitable sequence of
tasks and proper teacher guidance, most of the students can produce general, abstract and
conditional statements about motion in the field of experience of gears and take part in
the construction of proofs as justifications inside a theory.

We could conclude with the following citation:

The introduction of concrete referents into school mathematical activity
has been debated fro years (Sierpinska, 1995). ‘Realistic mathematics’
(Freudenthal, 1983; Treffers, 1978) and the application of the principle
of ‘operative concept formation” (Bender and Schreiber, 1980) are an
expression of a positive attitude. Several reasons are produced to justify
the recourse to a ‘real’ context: pupils’ motivation to learn geometry;
the need to establish links between school learning and everyday
learning; the conceptualization of mathematics as either ‘a language to
describe and interpret reality’ or as ‘a structure that organizes reality’.
These are all pedagogical, social or philosophical reasons and each can
be contrasted with different options. With this exploratory research
study we hope to have taken a step ahead, illustrating the cognitive
counterpart of activity with everyday concrete referents (in the case of
gears) that allows early approach to theoretical thinking. (ibid, p.85)
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3. THE CORE OF THE RESEARCH

3.1 The core of the research

Initially, the research was based on the idea to build a cognitive model applicable
to the analysis and understanding of possible student mechanisms and difficulties related
to the approach to proofs in mathematical analysis. To this extent the primary goal was to
explore the creative phase of the proving process (that phase where one looks for or
builds the hypothesis aimed at justifying or validating the facts proposed by the problem).

The issue of creativity in the hypothesis creation process led me to read Charles S.

Peirce’s works and his definition of Abduction:

[...] Abduction is where we find some curious circumstances, which
would be explained by the supposition that it was a case of a certain
rule, and thereupon adopt the supposition [...] (Peirce 2.624)

Therefore, abduction is any creation hypothesis process aimed at explaining a fact. Such
definition can be schematized as follows:

F fact
H hypothesis
If H were true H — F therefore H is likely.

Furthermore,

The surprising fact C is observed.
However if A were true, C would be a matter of course.
Hence, there is reason to suspect that A is true (CP. 5.188-189, 7.202)

C is true of the actual world and it is surprising, a kind of state of doubt we are unable to
account for by using our available knowledge. C can be simply a novel phenomenon, or

may conflict with background knowledge that is anomalous.
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Taking into account Peirce’s definition of abduction, the questions that initially
guided the first steps of the research project, were:
1. When do students use abduction in proving processes?
2. If they use abduction, how do they use it? Is there a context in which they
utilize it more than another?
The subsequent step was to give two different problems at two different periods of
the semester to a group of students attending freshman year of an engineering degree.
Problem 1: Let f be a function continuous from [0,1] onto [0,1]. Does this
function have fixed points? (Note: C is a fixed point if f(c)= c)
Problem 2: Given f differentiable function in R, what can you say about the
following limit?
Ih'ﬂ;' f(x, + h)z—hf (X, —h)

A first attempt of an a-priori analysis of the aforementioned problems quickly

unearthed some difficulties in predicting possible student creative mechanisms. Initially
the origin of such problems was not obviously apparent, but it was clear to see that the
definition of abduction, as given by Peirce, was not sufficient to frame and analyze
potential student creative processes.

After a deeper structural analysis of both problems I found the source of such
uneasiness to be the manner in which Peirce’s abduction referred to the creation of a
hypothesis that could explain an observed fact.™

On the contrary, problem 1 contains a closed-ended question, which means a
respondent can select from one or more specific categories to give the answer (in this
specific case, student can choose between “Yes, the function has a fixed point”, or “No,
the function does not have a fixed point”).

Problem 2 is an open-response task, which means a performance task* where

students are required to generate an answer rather than select it from among several

1 In an abductive process a “starting fact” is always considered and it is always true.

12 A performance task is an exercise that is goal directed. The exercise is developed to elicit students’
application of a wide range of skills and knowledge to solve a complex problem.



82

possibilities, but where there is a single correct response (definition taken from NCREL.:
North Central Regional Educational Laboratory).

In both cases the reader is confronted by a problem with a direct question, which
means the solver not only has to find hypotheses justifying a fact, but also has to look for
a fact to be justified. In conclusion, among the problems given to the students, there is not
a fact already observed and definitely true. This particularity generates the need to
analyze the abductive processes under a new light, in the sense that the nature of the fact
and the connections between hypothesis and fact have to be considered in a different way
than the manner proposed by a standard abductive process.

To clarify what | mean about this difference, let us take into consideration the

following example given by Peirce:

For example, fossils are found; say, remain like those of fishes, but far
in the interior of the country. To explain the phenomenon, we suppose
the sea once washed over this land. This is abduction. (Peirce, 2.624)

In this case the truthfulness of the fact is independent to the truthfulness of the
hypothesis built to explain the fact; if the hypothesis, at a certain point, turns out to be
false, this will not change the status of the fact, namely, the fossils would still remain “far
in the interior of the country.”

Therefore, in the problems considered in the experimentation, both hypothesis and
fact may take the aspect of conjecture, which Webster’s 1913 Dictionary defines as, ““an
opinion or judgment, formed on defective or presumptive evidence; probable inference;
surmise; guess; suspicion.

Having arrived at this point it is necessary to clarify which meanings of the words
fact and hypothesis will be adopted in this work.

In terms of the word ‘hypothesis’, Aristotle has already used this word meaning
‘hypothesis of a theorem,” but Archimedes (in The Arenaria) tested a ‘hypothesis’ as
related to physic reality, implicitly changing the sense of the word with respect to
Aristotle (Boero et al., 1995). Today, the word ‘hypothesis’ covers a wide range of

meanings. For example, in Collins Dictionary: a hypothesis is an idea that is suggested as
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a possible explanation for a particular situation or condition, but which has not yet been
proved to be correct. Whereas, in Webster’s Dictionary we find: (1) a supposition; a
proposition or principle which is supposed or taken for granted, in order to draw a
conclusion or inference for proof of the point in question; something not proved, but
assumed for the purpose of argument; (2) a system or theory imagined or assumed to
account for what is not understood; (3) the antecedent clause of a conditional statement.

Henceforward, the word ‘fact” will be defined as: referring to something as a
‘fact” means to think it is true or correct. Whereas ‘hypothesis’ will stand for: an idea
that is suggested as a possible explanation for a particular situation or condition. While,
hypothesis, in the Aristotelian sense (i.e.: hypothesis of a theorem), will be substituted by
the term “given.” Such a choice is motivated by the interest of the research that deals with
the creative aspects of a cognitive process and not, for example, with the formal
rearrangements of a proof.

Let us go back to the terms ‘hypothesis’ and “fact’ related to the aforementioned
problems. As stated, both may take the aspect of conjecture; the former is a conjecture
with the role of hypothesis meant as possible explanation; the latter is a ‘conjectured fact’
(in the sense that it could reveal itself to be untrue) in terms of the role of final answer to
the problem, or answer to certain steps of the solving process. This kind of fact will be
indicated with ‘c-fact’ to distinguish it from the standard fact (as defined by Collins’
Dictionary).

The tenet of abduction has also been confronted by Cifarelli part of whose
research is concerned with the relationships between abductive approaches and problem-
solving strategies. The purpose of his work is to clarify the processes by which learners
construct new knowledge in mathematical problem solving situations, with particular
emphasis on instances where the learner’s emerging abductions or hypotheses help to
facilitate novel solution activity (Cifarelli, 1999. The basic idea is that an abductive
inference may serve to organize, re-organize, and transform a problem solver’s actions.

The following example given by Cifarelli (in “Abduction, Generalization, and
Abstraction in Mathematical Problem Solving,” 1998) may highlight the core of his

work:
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Marie is a student who was given a set of algebra word problems,
designed by Yackel (1984) to induce problematic situations.

Marie had to solve the first problem involving the depths of two lakes,
and then she was asked to solve eight follow-up tasks, each a variation
of the original problem. The problems were designed in such a way to
have a range of similar problem solving situations and hence develop
ideas about “problem sameness” in the course of her on-going activity.
The third problem had insufficient information; initially, Marie guided
by the sameness of the problem tried to solve it in the same way she
had solved the previous two; very soon she realized that it was not
possible and that became for her a novel situation. The abduction took
place at this point, namely Marie needed to find an explanation of her
failure.

<<...The same way (she smiles, then displays a facial expression
suggesting sudden puzzlement) impossible!! It strikes me suddenly that
there might not be enough information to solve this problem (she re-
reads and reflects on her work) | suspect I’m going to need to know the
height of one of these things (solver points to both containers in her
diagram). | don’t know though, so | am going to go over here all the
way through>>

Applying Peirce’s logic structure, Marie’s abductive process would be translated in the

following way:

F: impossible (namely, the failure of the solving strategy Marie had thought to use)
H: there isn’t enough information to solve the problem

If H were true H — F therefore H is plausible

Therefore, the fact is represented by a failure and the abduction is the search of an
explaining hypothesis to such a failure.
Cifarelli’s analysis of Marie’s process is as follows:

Marie’s anticipation that “the same way” would not work was followed
by her abduction that the problem did not contain enough information,
later refined to the hypothesis that she needed more information about
the relative heights of the unknowns. While the hypothesis contained
elements of uncertainty, it helped organize and structure her subsequent
solution activity, whereupon she explored and tested its plausibility as
an explanatory device. (p.7).

Cifarelli’s attention is focused on the abductive inference as a tool to enhance the

search for further strategies when the application of a previous solution does not work.
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The hypothesis of the absence of enough information leads Marie to go through the
problem again to verify the plausibility of her hypothesis, and then to construct the
necessary data to solve the problem. Therefore, the researcher is not interested in the
“typological aspect” of abduction, but in the role such a process plays on the problem-
solving activities.

Returning to the analysis of the “typology” of abduction, I am intrigued by
Cifarelli’s extension of the concept of fact: in Peirce’s abduction the fact is a tangible
observation: the fossils far in the interior of the country, the white beans on the table, and
the documents talking about Napoleon; according to Cifarelli the fact may also be
represented by something that happens (e.g., the failure of a strategy). This new point of
view gives me the impetus to reflect on a new interpretation of the typology of abduction,
where the fact is also represented by a strategy / procedure or regularity.

Recapitulating, Peirce’s definition is insufficient according to my research into the
analysis of the cognitive creative processes, and it leads me to consider the case where
both fact and hypothesis are conjectures. Furthermore, Cifarelli suggests to me the idea of
looking at the typology of “ conjectured-fact” as a procedure.

Hence, the situations we can meet are:
1. The subject experiences a given fact (it is already true) and looks for a hypothesis
that may explain the fact (Peircean situation)
2. The subject gives_an answer (fact or conjectured-fact) and looks for a hypothesis

that may legitimate or explain the answer or fact.

3. The subject gives an answer (a fact or conjectured-fact) and looks for a strateqy
that may legitimate or explain the answer or fact.

4. The subject gives an answer (a fact or conjectured-fact) consisting of an already

known strategy applied by him to a novel situation, and looks for tools that may

legitimate such an adaptation.

As a consequence of these new considerations about abductive processes, the research

questions can be modified as follows:
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1. Are the definitions of abduction, already given, sufficient to describe creative
processes of an abductive nature? Or, is a broader definition of abductive process
needed to describe some creative students’ processes in mathematics proving? If

so, what is that definition?

2. Isone’s certainty about the truth of an assumption an indication for an initiation of
abductive reasoning in her or his process? Namely, how much is important the

level of confidence of the built answer to guide an abductive approach?

3. s there continuity between the cognitive “tool” one uses to build a conjecture and
the means one uses to establish its validity?
4. Which elements convey an abductive process? In particular, does transformational

reasoning facilitate an abductive process?

At this point it is necessary to ask the question, “ What links these research questions
with Peirce’s work? The common denominator is the philosophic spirit on which both
works are based. The core idea is the intention to show that the creative process owns
some components, and to separate this process from the belief that it is not possible to
talk about it because it is something indefinable and only comparable to a “flash of
genius.” This is the philosophical foundation of Peirce’s work, a man who “...struggled
over more than fifty years to lay bare the logic by which we get new ideas™ (Fann, 1970).
Peirce wanted to legitimate the fact that abduction is a kind of reasoning along with
deduction and induction, and he was willing to show that ““...reasoning towards a
hypothesis is of a different kind than reasoning from a hypothesis” (ibid.), in
contraposition with other philosophers like Popper who claimed that *...the initial stage,
the act of conceiving or inventing a theory, seems to me neither to call for logical
analysis nor to be susceptible of it” (Popper, 1959). Many philosophers regard the
discovery of new ideas as mere guesswork, chance, insight, hunch or some mental jump
of the scientist that is only open to historical, psychological, or sociological investigation.
The attempt of this research is to build a cognitive model that will help to recognize

creative processes.
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3.2  The Abductive System

According to the initial difficulties of analyzing the problems using only Peirce’s
definition of abduction, and the new considerations made about tasks requiring not only
the construction of a hypothesis but also of the answer, | have constructed new
definitions and tools which have been employed in the analysis of the protocols.

I define the Abductive System as being a set whose elements are: facts,
conjectures, statements, and actions: AS = {facts, conjectures, statements, actions}.

For fact | adopt the definitions of Collins’ Dictionary: (1) referring to something
as a fact means to think it is true or correct; (2) facts are pieces of information that can
be discovered.

For conjectures | adopt the definition given by the Webster’s dictionary:
conjecture is an opinion or judgment, formed on defective or presumptive evidence;

probable inference; surmise; guess; suspicion.

The conjectures assume a double role of:
1. Hypothesis; an idea that is suggested as a possible explanation for a
particular situation or condition.
2. C-Fact (conjectured-fact); final answer to the problem, or answer to
certain steps of the solving process.

Facts and Conjectures are expressed by statements divided into the three following

categories:
1. Stable statements
2. Unstable statements
3. Abductive statements

A stable statement is a proposition whose truthfulness and reliability are guaranteed,
according to the individual, by the tools used to build or consider the fact or conjecture
described by the proposition itself. Namely, the truthfulness depends directly on the tools
employed in the construction phase (E.g. a “visually-based” fact: the validity of the

proposition describing the phenomenon is justified by a visual perception).
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An unstable statement is a proposition whose truthfulness and reliability are not
guaranteed, according to the individual, by the tools used to build or consider the
conjecture described by the proposition itself. Namely, the tools used in the creation
phase are not sufficient for the solver to consider the conjecture described by the
proposition as being definitively true. The consequence of this is the search of a
hypothesis and or an argumentation that might validate the aforementioned statement.

An abductive statement is a proposition describing a hypothesis built in order to
corroborate or to explain a conjecture. The abductive statements too, may also be divided
into stable and unstable abductive statements. The former, according to the solver, state
hypotheses that do not need further proof; the latter require a proof to be validated, that
means a process that brings back and forward.

An abductive statement may present different structures:
1. Itdescribes a hypothesis to justify a conjecture.
2. It describes a procedure to justify a conjecture.
3. It describes tools to justify a procedure.

It is important to clarify that the definitions of stable'® and unstable statement are
student-centered, namely, the condition of stable and unstable is related to the subject:
what can be stable for one student may represent an unstable statement for another
student and vice versa; not only that, but the same subject may believe stable a particular
statement at a certain point of their scholastic career, and this may become unstable later
on when their base cultural knowledge of structured mathematical knowledge increases
(e.g.; she or he learns new mathematical systems; new axioms and theorems).

Furthermore, a stable statement may become unstable, inside a similar problem solving

3 The concepts of stable and unstable are related, moreover, to the mathematical context. In Euclidean
Geometry if a statement is stable, the problem will be only to find the tools to prove it. Namely, in
Euclidean Geometry it is enough to find few variations of “targeted” drawings to guarantee the stability of
a statement. In Arithmetic the problem is more complex; it is sufficient to think of Goldbach’s conjecture.
Goldabach’s original conjecture (sometimes called the “ternary” Goldbach conjecture), written in 1742 in a
letter to Euler, states “at least it seems that every number that is greater than 2 is the sum of three primes”.
Note that here Goldbach considered the number 1 to be prime, a convention that is no longer followed. As
re-expressed by Euler, an equivalent form of this conjecture (called the “strong” or “binary” Goldbach
conjecture) asserts that all positive even integers > 4 can be expressed as the sum of two primes. Not only a
proof has not been found yet, but also, even though many millions of even numbers have satisfied such
property, we are still not sure of its validity.
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process, not because the student is convinced of that, but for a “cultural contract”;
namely, the student may recall their scholastic experience and remember that a statement
is considered stable if it is justified inside a precise mathematical system supported by
axioms, and theorems; thus they will analyze the tools employed for verification if they
satisfy such conditions. Another situation leading the student to reconsider a statement
from stable to unstable is the “didactical contract”; the subject might believe the visual
evidence to be sufficient in order to justify a conjecture, but the intervention of the
teacher could underline its insufficiency and therefore the students would find themselves
looking for new tools. Furthermore, the same statement may transform from unstable to
stable inside a similar process because the subject follows the mathematician’s path: they
starts browsing just to look for any idea in order to become sufficiently convinced of the
truth of their observation, then they turn to the formal-theoretical world in order to give
to their idea a character of reliability for all the community (Thurston, 1994).

The following example, taken from Harel’s Proof Schemes work, seeks to clarify part
of this tension:

[...] Further, a person can be certain about the truth of an observation
in one situation, but seek additional or different evidence for the same
observation in another situation. For example, long before students
learn geometry in school, they are convinced, based on personal
experience and intuition, that the shortest way to get from one point to
another is through the line segment connecting two points. Later, as
participants in an Euclidean geometry class, an instantiation of this
observation - stated in the theorem “The sum of the lengths of two sides
of a triangle is greater than the length of the third side” — may become a
conjecture for the students until they find evidence that would be
accepted by their class community or their teacher. The kinds of
evidence the students may look for are based on whatever conventions
are accepted in their class as evidence for a geometric argument. These
conventions may differ from one class to another; for example, what
might be accepted as evidence in a standard high school Euclidean
geometry class is likely to be insufficient evidence for a college class
studying axiomatic geometry. (p. 243)

Behind any statement there is an action. Actions are divided into phenomenic actions

and abductive actions. A phenomenic action represents the creation, or the “taking into

consideration” of a fact or a c-fact: such a process may use any kind of tools; for

example, visual analogies evoking already observed facts, a simple guess, or a feeling,
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“that it could be in that way”; a phenomenic action may be guided, for example, by a
didactical contract or by a transformational reasoning (Harel, 1998).

An abductive action represents the creation, or the “taking into account” a justifying
hypothesis or a cause; like the phenomenic action, they may be conveyed by a process of
interiorization (Harel, 1998), by transformational reasoning (ibid) and so on. The
abductive actions may look for:

1. A hypothesis, to legitimate the previous met or built conjecture

2. A procedure, to legitimate or justify the previous built conjecture

3. Tools to legitimate the adaptation of an already known strategy to a novel

situation.

After a broad description, the Abductive System could be schematized in the
following way: conjectures and facts are ‘act of reasoning’ (Boero, 1995) generated by
phenomenic or abductive actions, and expressed by ‘act of speech’ (ibid) which are the
statements. The adjectives stable, unstable, and abductive are not related to the words of
the statements but to the acts of reasoning of which they are the expression. Hence, the
only tangible thing is the act of speech, but from there we may go back to a judgment
concerning the act of reasoning thanks to the adjectives given to the statement.

Finally, for two different subjects the same statement may be stable or unstable.
Therefore, two persons may achieve the same act of reasoning and judge it by a different

method.



The following chart shows the structure of the Abductive System
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4. METHODOLOGY

4.1  Site and Participants

The study is a basic research™ and its purpose is to build a model to identify and
account for possible cognitive processes students implement when they perform
conjectures and proofs in Calculus, specifically a cognitive model that will help to
recognize creative processes.

The data has been collected at the University of Industrial Engineering and
Management of Genova (Italy) during the academic year 2001-2002, and the participants
are freshmen enrolled in required calculus classes for engineers. The courses cover
differentiation and integration of one-variable functions as well as differential equations.
The student participants are 18 or 19 years old. There are two main reasons for choosing
to work with this population: 1) My working experience is with students of this age; 2)
The approach of the university frequently revealed a very delicate and difficult issue,
since the “cultural and didactical reality” the students come in contact with at the
university is markedly different from their experiences in high school. This gap, in many
cases, seems to be critical for the mathematical development of these students. The
university approach demands more autonomy in facing mathematical problems. This
approach asks students to participate in autonomous work in the creation of hypotheses,
conjectures and implement a sense of critique in evaluating their own actions in the
problem solving process; such a request seems to cause to the students several important
problems, suggesting their creative abilities had been lost during their scholastic career.

At the beginning of the Calculus course the teacher introduced me to the students
as a Teacher Assistant, working once a week with them in class for a session of three

1 The purpose of basic research is knowledge for the sake of knowledge. The basic researcher’s purpose is
to understand and explain. The most prestigious contribution to knowledge takes the form of a theory that
explains the phenomenon under investigation. (Patton, 1990)
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hours, during which the students would solve problems proposed by me, and they would
be able to discuss possible problems raised by them. During the week, the students would
be able to come to my office for further explanations about topics discussed in class, or
about exercises solved autonomously.

The students’ participation at the lessons was not mandatory, and there was not
any relation between their participation and the result of the final exam, since the teacher
would never know who followed the lessons and who did not.

Having established my main role (namely, the one described above), | later asked
the students if someone was interested in taking part in a research project, which was
related to my doctoral thesis. | clarified that such participation would not be mandatory,
and that there would not be any relationship between their consent and the results of their
final exams. | explained that the purpose of my study would be to look for possible
creative processes during the problem-solving phase; and to this extent I would give the
participants in the project some tasks to solve, and they would be videotaped, and that |
would participate in some lessons given by the teacher in order to gather field notes.

The choice of the classroom participants (about one hundred students) was
completely left to this group of students and was therefore totally random; my only
concern being that the sample would be heterogeneous from the point of view of both
culture and ability; but this could be monitored since | was constantly in contact with the

students.

4.2 Data Collection

The data was collected through the following sources:

a) One questionnaire, distributed to all of the students (about one hundred) of the

classroom; the questionnaire was anonymous, and composed of the following questions:

1. CHECK THE FORMS OF REASONING YOU KNOW
a Induction
o Deduction

a Others. Which ones?



94

2. AS A STUDENT, DO YOU CONSIDER THE STUDY OF PROOFS TO BE
NECESSARY?
o Yes. Why?
o No. Why?
o Sometimes. When?
3. WHICH KIND OF RELATIONSHIP LIES BETWEEN HYPOTHESIS AND THESIS
IN THE CONSTRUCTION OF THE STATEMENT OF A THEOREM?
o The hypothesis always comes before the thesis. Why?
o The thesis always comes before the hypothesis. Why?
o Depends (Justify it)
4. FOR EACH THEOREM DO YOU THINK THAT THERE EXISTS ONLY ONE
CORRECT PROOF?
o Yes. Why?
a No. Why?
5. THE CONSTRUCTION OF A PROOF HAS TO FOLLOW A FIXED PATTERN.
CREATIVITY CANNOT FIND ROOM IN THE CONSTRUCTION OF PROOFS.
o True. Why?
o False. Why?
Note: for the following question it is possible to choose more than one answer
6. A PROOF IN CALCULUS HAS THE FOLLOWING ROLE(S)
o Convince someone of the validity of a statement
o Explain why a statement is valid
o Establish the validity of a statement
a Other (specify)

The purpose of the questionnaire is to investigate what kind of “culture of proof”
students own; and what conceptions and misconceptions they have about this issue, in
order to understand the kind of cultural background owned the potential participants at
the research project.

What | am interested in is the idea students have about the construction of proof,

its use and role also from a didactical point of view, and how their “scholastic
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experience” may have influenced and changed the way they think of proof and how they
think of themselves in relationship with the construction of a proof.

The first question is just a survey tool to check which forms of reasoning students
are familiar with, and whether they define or recognize forms of reasoning other than the
inductive and deductive ones.

The second question is designed to investigate what kind of “mental attitude”
students approach a proof with, if they tackle the construction of a proof just because
they are told to do so by the teacher, or if there is a sort of curiosity and a conviction
about its necessity. The “why” question is designed to examine what kind of influence
school could have had in students’ opinion about such an issue.

Question number 3 attempts to discover and analyze students’ conceptions about
the structure of a proof. Very often students are involved in dealing with “ready made”
proofs; their first experience with such proofs usually represented by the presentation of
the statement of a theorem followed by a well structured proof, meant as a chain of
deductive steps, one following the previous one, supported by axioms or previously
proved properties or theorems. Very often, mathematician’s cognitive processes,
employed to generate such a proof, are an alien topic for the students themselves.
Unfortunately, this means that students very seldom have the opportunity to deal with a
“proof in progress.” On the contrary, they usually have experience with the kind of
didactical contract that sees the teacher as the only source of truth, and the one who
simply transfers some pre-constructed knowledge to the class.

In a similar manner, questions 4 and 5 aim to understand the ideas, regarding
proofs, students have constructed during their scholastic careers. The question also seeks
to determine if they think it is possible for any theorem to have just one correct proof, or
if they do not relate creativity and personal initiative with the process of constructing a
proof, because over time they only experience the final product of the proof. If so, we
may interpret their difficulty in their approach to the proving process and their reluctance
to tackle an open problem because they just wait for somebody tells them how to

proceed. The final question is critical because it is fundamental in attempting to
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understand which role students give to a proof, because it is this idea that leads their
predisposition toward the construction of the proof.

Briefly, from the analysis of the questionnaire most of the students think of proofs
as a tool to better understand theorems, their meaning, and the reasoning involved into
the process of proving. The remaining part is mainly concerned with the idea that proofs
are necessary because they validate the problem and convince of its validity, or as a tool
useful to solve problems, to create mental schemes to be used in problem-solving,
furthermore they explain the why of a fact, and finally they make a context clearer, and
easier to be remembered. Furthermore, the totality of the students agrees with the fact that
there may exist more than one correct proof for the same theorem. Finally, creativity
seems to be an important component for the construction of a proof. (A complete analysis
of the questionnaire can be found in Appendix A).

b) Two different exercises given, at two different periods of the semester, to the

participants in the project (twenty students took part in the project). In the problem
solving phase the participants were asked to work in pairs (leaving to them the decision
about whom to work with); the choice of making them work in pairs was motivated by
the conviction that the necessity of “thinking aloud” to communicate their own ideas
gives the opportunity to bring to light guessing processes, creations of conjectures and
their confutations, namely those creative processes which in great part remain “inside the
mind” of the individual when one works alone, and very often only the final product is
communicated to the others (Thurston, 1994; Lakatos, 1976; Harel, 1990; et al.).

It is important to note that the participants were not asked to produce any particular
“structured” solution; my aim being to leave the students completely free to decide their
solution process and to autonomously evaluate the acceptability of their solution for the
learning community.

Problem 1: Let f be a function continuous from [0,1] onto [0,1]. Does this function have

fixed points? (Note: C is a fixed point if f(c)= c)

At the time the students were given this problem they had already been exposed, in

the curriculum, to the theory of the continuous functions, with related theorems, but they
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had not previously seen the definition of fixed point. This problem contains a close-ended
question, which means respondent can select from one or more specific categories to give
the answer (in this specific case, student can choose between “Yes, the function has a

fixed point” or, “No, the function does not have a fixed point™).

Problem 2: Given f differentiable function in R, what can you say about the following
limit?

lim f(x,+h)- f(xo—h)l

h—0 2h

At the time this exercise was proposed, the students have been exposed to the
definition of differentiable function through the limit of the difference quotient. Problem
2 is an open-response task, which means a performance task> where students are
required to generate an answer rather than select it from amongst several possibilities, but
there is a single correct response (definition taken from NCREL: North Central Regional
Educational Laboratory).

In both cases the reader is confronted by a problem with a direct question, which means
the solver not only has to find hypotheses justifying a fact but also identify a fact to be
justified.

The aim of these exercises is to confront the students with the necessity to produce
conjectures, to prove their validity or refute them, namely to use their own creative
processes in order to produce facts, conjectures and hypotheses.

Throughout the process of both problems the students have been videotaped.

¢) Videotape of a lecture given by the teacher. The aim of the collection of this data is to

study the behavior of the teacher during the didactical transposition, and observe the

relationship between the “cognitive attitude” of the teacher and that of his students.

15 A performance task is an exercise that is goal directed. The exercise is developed to elicit students’
application of a wide range of skills and knowledge to solve a complex problem.
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4.3  Data Analysis

The analysis of the protocols is based on the analysis of the text (which has been
transcribed verbatim from the videotape) with the aim of looking for possible structures
in the dialogue indicating creative processes, meant as the processes of creation of facts,
hypotheses and conjectures.

From the analysis of the dialogue | want to find which kinds of reasoning enhance
a creative attitude. Besides the analysis of the text, | want to analyze what the students
have produced in their protocols, in order to look for possible relationships among the
various languages: from the graphic language, iconic and algebraic, and the process of
creation of hypotheses, conjectures and facts.

Therefore, | want to understand how students make sense of mathematical
symbols, in which ways they interact with icons and graphs in order to create hypotheses,
conjectures and facts.

The analysis of the protocols is divided into two phases. The first phase shows a
comprehensive description of students’ behaviors in tackling the problem; in the second
phase the creative processes are detected and interpreted through the elements of the
abductive system.

The videotape is a tool in the triangulation of the data; it gives the opportunity of
going over any dialogue students have engaged in during the problem solving process. In
the same way, the analysis of the transcript of the lecture given by the teacher is aimed at
examining the structure of the teacher’s dialogue, indicating creative processes, and to
compare these with the attitudes observed in the students.

My theoretical framework is based on the notion of Symbolic Interactionism.
Jacob (1987) states that the focus of Symbolic Interactionism is to understand the
processes by which points of view develop. And such a tradition provides models for
studying how individuals interpret objects, events, and can be utilized for studying how

this process of interpretation leads to certain behavior in specific situations.
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Concerning the analysis of the data: Content Analysis™ has been adopted, in the
sense that Content Analysis is the process of identifying, codifying and categorizing the

primary patterns in the data (Patton, 1990).

16 Content analysis is the process of identifying, codifying, and categorizing the primary patterns in the
data. This means analyzing the content of interviews and observations. (Patton, 1990)
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5. ANALYSIS OF THE DATA

5.1  Analysis of the protocols

The analysis of the protocols is based on the analysis of the text (which has been
transcribed verbatim from the videotape) with the aim of looking for possible structures
in the dialogue indicating the creative processes, those of the creation of facts, hypotheses
and conjectures. Besides the analysis of the text, | want to analyze what the students have
produced in their protocols, in order to look for possible relationships among the various
languages: from the graphic language (iconic and algebraic), and the process of creation
of hypotheses, conjectures and facts. The analysis of the protocols is divided into two
phases:the first phase shows a comprehensive description of students’ behaviors in
tackling the problem; the second phase illustrates how the creative processes are detected
and interpreted through the elements of the abductive system.

Tables divided into two columns represent the structure of the second phase of the
analysis; the left column is used to write the excerpts considered relevant to the creative
processes; while the right column has been used to write the interpretation of the excerpts
through the tools of the abductive system; furthermore the vertical arrows linking one
excerpt to another describe the possible cognitive movement leading from one statement

to another one. Let us revisit the text of the two problems:

Problem 1: Let f be a function continuous from [0,1] onto [0,1]. Does this function have

fixed points? (Note: C is a fixed point if f(c)= c)

Problem 2: Given f differentiable function in R, what can you say about the following
limit?

lim f(x,+h)- f(xo—h).

h—0 2h
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5.1.1 Marco and Matteo (fixed point problem)

The first step is represented by the statement: *““the function probably has a fixed
point”. This consideration seems to be generated by a mechanism of didactical contract,

namely, if the problem asks such a question...it follows that the answer is affirmative....

The aforementioned act of reasoning is expressed by an unstable statement, in the
sense that Matteo and Marco do not consider the request of the existence of a fixed point,
a sufficient reason to legitimate what they have claimed. Hence we can define it a c-fact,
because it plays the role of final answer to the problem but the subject is not sure of its
truthfulness.

At this stage the attention shifts backwards: before looking for a hypothesis
justifying the presence of a fixed point, Marco and Matteo try to understand which the
fixed points are and how they can be found; the core of the problem now becomes to
identify and explicate the properties of the set of the fixed points; they need to create a
cultural background, meaning a theory supporting the creation of the hypothesis.

R7: Matteo: How can we find this fixed point?

This is the phase of the construction of a theory aimed at the creation of the
hypothesis; namely, “if we can understand how the fixed points are made and how we
can find them, then we will be able to create a hypothesis that might justify the presence
of fixed points.”

They try to understand which ones are the fixed points, and they say:
R8: a fixed point is here, another one is here... (see Figure 7) and they arrive at the
conclusion that the fixed points lie on the bisector line.

Then

Figure 7: Representation of the fixed points
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The construction phase of a possible theory is characterized by a graphic
exploration. The graphic aid comes into this: Marco and Matteo, led by the squares on the
paper, start identifying the fixed points with ones of the vertexes of the squares, because
they satisfy the condition to have the same coordinates, and from the visualization in the
discrete they go to the continuous, hypothesizing that if it is valid on the visible vertexes,
it will be valid for all the “sub-squares” which is made by. Marco and Matteo have the
following definition of fixed point: (c, f(c)) with f(c) = c; therefore c is the “x” and f(c) is
the “y”. The subsequent step is represented by their statement that the fixed points are the
ones that have “the x equals y” and the y represent it graphically as vertexes of the square
of the paper. The idea that the point has the same coordinate allows Marco and Matteo to
sign them on the vertexes of the square of the paper. Therefore, the idea is translated in
sign, such a sign potentially allows a new step, it suggests visually the passage from
discrete to continuous...they probably realize, thanks to a visual factor, that between the
square represented by the first square of the paper and the second one there are other
infinite squares whose vertex will represent a fixed point. Therefore, they draw the line
connecting these points; always working graphically they realize that what they have just
drawn is the bisector line of the I and Ill orthant and therefore there is a shift to the
interpretation of the fixed point represented by the passage from f(c)= c to y = x (again
the sign is source of thought, a dynamic that goes from outside to inside). There is an
identification of the set of the fixed points with the bisector line of the I and Il orthant.
Therefore in the passage from the discrete to the continuous the graph becomes a
source...meant as a new source of thought.

We could schematize these steps as follows:

e The vertexes of the visible squares of the paper sheet represent fixed points
e Among the visible squares there are infinite other squares:
Consideration of a fact
Then corroborated by a sub-intended
hypothesis, namely *“the space
between the squares is not empty”’;

hypothesis that seems not to need
further proofs of its validity.
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e There are infinite vertexes representing fixed points, and a line can link these

points

Then

e Visually I realize that such line is the bisector line of the I and 11 orthant.

At this point Marco and Matteo, in their theoretical background, own the following
notions:

1. The set of the fixed points is the bisector line (built by the student)

2. Function f, continuous in [0,1] onto [0,1] (given of the problem)

3. Continuous function means that there are no gaps in the interval [0,1] (students’

built conception)

As we can understand from the following excerpt:
R10: Matteo: | would say yes...lI would say that the fixed points are on...y = x...and if
our function must assume all the value of the image in such a way if it is continuous it
must go through this line...there will be a point for sure...
The graphic representation leads to state that there is an intersection with the bisector
line.
The situation so far is schematized as follows:
1% STEP: the function has fixed points (if the problem asks it...didactical contract)
2" STEP: the set of the fixed points is the bisector line  (built by the student)
3" STEP: the function intersects the bisector line.

The act of reasoning expressed by the statement “the function intersects the bisector

line”, takes a complex aspect. It comes out as the consequence of a graphic representation
of the bisector line and several continuous functions, standing for the answer to a certain
phase of the solving process; subsequently the statement is re-interpreted and the c-fact

becomes a hypothesis, meant as possible explanation of the initial conjectured-fact “the

function probably has fixed points.”
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The act of speech becomes an unstable abductive statement, because Matteo

doesn’t think of the visual impact as a sufficiently strong justification to guarantee that all
the continuous functions in [0,1] intersect the bisector line in the interval.
Before proceeding with the analysis of the protocol the following observation is needed:

in the first phase it has been said that the act of reasoning represents a c-fact, relating its

“instability” to that one considered when the act of reasoning takes the role of hypothesis,

nevertheless, we do not have to ignore the hypothesis that if the act of reasoning had been

stopped at the first step, the visual impact could have been enough for Matteo and Marco,

and then the act of reasoning would have been expressed by a stable statement.

The subsequent step is to prove the validity of the hypothesis “gr(f) N b = &”. In
the proving phase Matteo and Marco use the proof by contradiction; such a strategy is
probably conveyed by the fact that in the lessons immediately prior to the
experimentation, the students had met this kind of proving approach, and therefore they
try to use it in the current situation. Furthermore, a proof by contradiction leads the two
students to work with the existential quantifier 3, instead of the universal quantifier Vv,
which may represent an easier argument. Let us take into consideration the following
excerpt:

Matteo tries to explain to Marco:

R16: M: we have to prove that f (x) intersected with y = x is not empty, different to the
empty set. We have to prove that it is possible to go from here to there without
intersecting the bisector line, but if a > b taking a as the point where x = 0 and that lies
on the upper side of the bisector line, b the point where y = 1 and b lies on the lower side
of the bisector line there must be a point between the two where the x =y...there must be
for sure and | can do the same thing changing the position of the two points
respectively...or collocating them at the same height...I have to write it down in formal
way...(conception of proof as formal proof) (see Figure 8).
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Figure 8: Matteo’s graphic aid

They try to build an acceptable standard proof and at this point I give them the
formal definition of continuity with € and 8. They try for a while but then they go back to
the proof by contradiction.

Now there is a shift that moves the individual argumentation process (a dialogue inside
the self) towards an audience. | think it is still an “ascertaining” phase and not
“persuading.” The communication toward the other person seems to be a new tool to
make argumentative inquiry; namely, Matteo is trying to explain to Marco his own point
of view, in doing so | think he is trying:

e To shed more light on his own argumentative process

e Tofind in his interlocutor assistance to overcome an impasse in which he, Matteo,

seems to be.

Therefore, Matteo reformulates the fact previously stated: “we have to prove that f (x)
intersected with y = X is not empty”.
On the graph he visualizes the two points (0,a) with 0 <a <1 and (1,b) with 0 < b <1
underlining that the first point lies on the upper side of the bisector line and the second
point on the lower side (important, because this implies that the bisector line “interferes”
with the graph of f(x)).
R17: Matteo: by contradiction we take ‘a’ that is greater and =0 and ‘b’ minor, now we
say by absurd it doesn’t go to, at this point ‘a’ will take in this point here any point in the
middle and that a =y, therefore a point in which y > x always because in the first

instance we said that it was greater therefore y must be greater than x and in this other
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little point here and here and here it will always be greater strictly greater we arrive here
where it must be greater than X, at this point we have to take all these points here; its
value in 1 cannot be less than 1, equal 1 or more than 1 because it must stay in this

interval here, therefore it is absurd. (Figure 9)
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Figure 9: Matteo and Marco’s graphic attempts

In the proving phase it is possible to identify a further creative movement. Adopting the
approach of the proof by contradiction, the hypothesis to be proved becomes: gr(f) N b =
@. This occurs through the graphic representation and the use of transformational
reasoning (Harel), meant as the ability of reasoning dynamically on the graph of the
function, and of anticipating the possible results of such graphic-dynamic exploration.
Matteo arrives at a new act of reasoning expressed by an abductive statement: the graph

of the function belongs totally to the upper triangle. The aforementioned hypothesis

would explain why gr(f) N b = &. At this stage they use a transformational reasoning to
prove that having arrived at x=1 none of the following options would be acceptable, y=1,

y<1, y>1 and this would be an absurdity.



107

The non validity of gr(f) n b = & consolidates the truthfulness of gr(f) N b # & and

therefore the transformation of “f probably has fixed points” from conjectured-fact to

fact.

5.1.2 Analysis through the tools of the Abductive System

Excerpt

Interpretation through the tools
of the Abductive System

f probably has fixed points

The search of a justifying
hypothesis needs the
construction of a theory. In
this case: to identify and
explicate the properties of
the fixed points. The need
to broaden the cultural
background in order to be
able to build the hypothesis

CONJECTURE with role of answer to the problem,
therefore it is a C-FACT. The C-FACT is created by a
PHENOMENIC ACTION, guided by a didactical
contract: “if the problem asks...” The statement
describing the C-FACT is an UNSTABLE STATEMENT
because Marco and Matteo don’t believe the
didactical contract sufficient to validate the

statement.

The vertex of the squares on the
paper sheet represents a fixed point

The graphic
exploration
continues

FACT created by a PHENOMENIC ACTION. It is
expressed by a STABLE STATEMENT, in fact Matteo
and Marco justify it through a visual impact that

seems to be sufficient

The set of the fixed points is the

bisector line

Now they
have a new
property in
their
cultural
background

FACT created by a PHENOMENIC ACTION guided by
the visual impact and by an unconscious
consideration of the density of R?. The fact is
expressed by a STABLE STATEMENT, which is
justified by: 1) the vertexes of the squares
represent the fixed points; 2) cognitive jump:
between two squares there are infinitely many

others. The visual impact seems to be sufficient.
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The continuous functions in [0,1]
intersect the bisector line

Choice of a proving
strategy: “proof by
contradiction”.
Probably guided by
a didactical contract,
because they
recently saw such
kind of procedure

In this case we have two different stages.

First stage: THE ACT OF REASONING is created by a
PHENOMENIC ACTION guided by a visual impact; and
it is expressed by a UNSTABLE STATEMENT based on:

1) Continuous function in [0,1] onto [0,1]
(given of the problem)

2) Bisector line as set of the fixed points
(built by the student)

3) Continuous function in [0,1] means no
gaps in the interval (student’s elaborated
conception)

At this point, an ABDUCTIVE ACTION is
accomplished: the C-FACT is reinterpreted as
possible HYPOTHESIS corroborating the initial C-
FACT (*“the function has probably fixed point”; in
fact if the function has a common point with the
bisector line, then this point is fixed). The
statement becomes an UNSTABLE ABDUCTIVE
STATEMENT, unstable because Marco and Matteo
do not believe the three aforementioned
conditions sufficient to validate the hypothesis
expressed by the statement.

Obs.: in the first phase it has been said that the

act of reasoning represents a c-fact, relating its

“instability” to that one considered when the act
of reasoning takes the role of hypothesis.
Nevertheless, we do not have to ignore the

hypothesis that if the act of reasoning had been

stopped at the first step, the visual impact could
have been enough for Matteo and Marco, and then
the act of reasoning would have been expressed

by a stable statement.
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There exists a function continuous on | PHENOMENIC ACTION guided by the structure of the

[0,1] such that it doesn’t intersect the proof by contradiction; this action creates a C-FACT

bisector line.

g nb=Y Graphic expressed by an UNSTABLE STATEMENT.
exploration;
adoption of

transformational

reasoning

gr(f) belongs to the upper triangle Creation of a HYPOTHESIS through an ABDUCTIVE
ACTION guided by a visual impact. The hypothesis
is stated by an UNSTABLE ABDUCTIVE STATEMENT in

the sense that Matteo and Marco believe the

1 — = L visual impact to be insufficient to validate the

—-— L hypothesis
» N

In Marco and Matteo’s protocol it is possible to find an abductive process both in

conjecturing and evidencing process.

5.1.3 Daniele and Betta (limit problem)

R1: D: xot+h...
R2: B: f (Xo)...
R3: D: in my opinion it is the same thing... when you do the limit of the difference

F (% + hr)] — (%) ...this minus this over h...

quotient, you do ng

He signs on the graph the vertical and the horizontal segments (see the red segments in
Figure 10)
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f(xo +h)_ f(Xo)

Figure 10: Daniele’s graphic interpretation of ™

R4: D: (note: he signs on the drawing done on the protocol, this | divided by this—)
R5: B: because f(xo + h)...

R6
R7: B: Ah...OK...ours would be this (see the red segments in the figure 11) over 2h...it is

(2]

: D:_minus f(Xo)...Is this

the same thing...

f(x, +h)—f(x,—h)

Figure 11: Graphic interpretation of on

R8: D: therefore...it would be h— 0...how much is this?...eh...it will be the slope of the
tangent line...
R9: B: namely...the first derivative
R10: D: in Xg

Daniele draws a generic function f(x) and he signs on the axis Xg, Xo+h, Xo-h, f(Xo),
f(Xo+h), f(xo-h). The first tool he makes use of, is iconic; secondly he observes for a while
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the sign he produced, and then he says: “...in my opinion it is the same thing”’; namely,
“doing lim TG+ 1) = TG0 =) ¢ the same of fim o TN = T(%)
h—0 2h h—0 h

The act of reasoning takes the role of answer to the problem, and it s a c-fact expressing a
process. The Phenomenic action, which creates the c-fact, seems to be guided by a
feeling, by a visual impact with the graphic representation that resembles the graphic
situation met for the limit of the standard difference quotient.

The visual impact, though, is not sufficient to validate the act of reasoning, which
represents a c-fact and it is expressed by an unstable statement:“...in my opinion it is the
same thing”.

The process follows with the search of a hypothesis validating the c-fact, to this extent:

a) There is a reinterpretation of the frame used for the standard difference quotient.
Daniele translates the difference quotient as the ratio of the two segments <<this |
divided by this— >> (see Figure 10)

b) Such interpretation is shifted to the present situation. Daniele states that the tools

f (X, +h) = f(x, —h)
2h

are the same:

is always the ratio between two segments
(see Figure 11).
In this way the validating hypothesis is created: “the two limits use the same

tools”. Finally, the abductive action, which allowed the creation of the validating
f(x +h)—T(x)
h

hypothesis, brings to a deductive process in the sense that being Llrrol

f(X0+h)—f(X0—h)_
2h -

f’(xo) and according to the validated fact that ng

f(x, +h)— (%, —h)
2h

This hypothesis has probably also been generated by the kind of function sketched by

= £ (xo).

lim f(x, + hr)]— f(x,)

are the same, then lim
h—0 h—0
Daniele. The choice of xo leads to a sort of symmetry related to f(xp); namely, f(xo+h)-
f(Xo) and f(xo)-f(Xo-h) seem to be two segments of equal length.

At this point they explain their solution to me:
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R16: B: this is equal to this (they indicate the two limits...)...we did it graphically (i.e.,

f (X, +h) = (X, —h)
2h

Betta indicates and what they have highlighted graphically)

R17: D: | mean, we do this...it would be the ratio between this difference /and this one
— and in our case it would be the ratio between this difference / and this one —
therefore, Xo + h —(xo — h) that would be 2h...and this one that would be f(xo + h) — f(xo —
h)...therefore, the limit for h that goes to zero would be...I mean both go to x, (note: he
shows it to me on the graph).

The validity of their hypothesis is justified graphically, and such a visual impact seems to
be sufficient.

At this point I try to provoke Daniele and Betta and to insinuate in them the doubt about
the adequacy of their graphical justification.

R21: D: at an intuitive level, yes...but in my opinion it is not a rigorous justification

R22: 1: why?

R23: D: because if somebody explained it to me in this way...l wouldn’t...

R24: 1: you wouldn’t believe him?

R25: D: no...lI mean...but it seems to me to know it only in this way...

R26: I: (note: Daniele thinks)

R27: D: eh yes...anyway it is correct...] mean, the difference quotient would be this
chord ...namely, it would be the tangent line of this angle, right? The difference
quotient...therefore, for h that goes to zero, this...this chord...shrinks more and more till
when it becomes a point and it is the tangent line in that point...in this case it is the same
thing

R28: I: If you were told in this way...it would be enough for you? Would you be
convinced if one of your classmates explained it to you in this way? Would you say....ah,
OK...yes, yes...or would you have some doubts?

R29: D: we should write it down...

R30: I: how do you write such a thing?

R31: D: firstly, if I have an equation and | do the limits of the both parts...it is the same

thing...
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Daniele employs again the graphic dynamics since when he tries an algebraic strategy. At
this point they consider the equation
F(xo+h)—f(x,—h) _ (X, +h)— ()
2h h
This would justify the equality between the two limits. We have, then, the sub intended c-
f(xg+h)—f(x,—h) _ lim f(x, +h)= f(x,)
2h h—0
f(x, + h)z—hf(xO —h) _ (X + hr)] - f(%,) is built.

The consideration of this hypothesis is probably guided by a fact already acquired by

fact: Ihmg , and the justifying hypothesis

Daniele and Betta, namely, if f(x) = g(x) Vxe(Xo-9, Xot+0d) then  limy_xo f(X) = limy_xo
g(x). It follows a series of algebraic manipulations based on an erroneous starting idea,
namely, Daniele and Betta in proving the equality between the two expressions start

f(x, +h)—f(x,—h) _ f(x,+h)—f(x,)

exactly from
2h h

f (X, +h) = f(x, —h)
2h

R32: B: therefore, if you prove that this is equal to this (namely,

and f(x0+h;—f(xo)

R33: D: eh...therefore...yes but...l must... it would be
» f(x, +h)—f(x,) _ f(x, +h)—f(x,—h)
h 2h

And they simplify in the following way
f(x, +h)—f(x,) _ f(x,+h)—f(x,—h)
A B 4
R34: I: but then you have already given for sure that this and this one are equal...
R35: D: ehm...yes...
R36: I: no, you have to prove it. | thought you would want to prove that
f(x, +h)— f(x, —h) _ f(x, +h)— f(X,)
2h h

)

2

2 p
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R39: D: yes...but you are right! I already thought to be true the equality...then, 1 looking

for...no, no...

After some further algebraic manipulations, Daniele goes back to the graph and he
realizes that the line connecting the points A(Xo+h, f(Xg+h)) and B(Xo-h, f(Xo-h)) and the
one connecting A(Xoth, f(Xo+h)) and C(xo, f(Xo)) have one point in common; therefore,
proving the equality between the two difference quotients would mean to prove the
parallelism between two lines that go through one same point, that is impossible. The
graphic tool becomes an important means to invalidate the previously built hypothesis,
f(x, +h)—f(x, —h) _ f(x, +h)— f(X,)

2h h

Daniele and Betta at this point realize that the error has been conveyed by the drawing of

namely, the equality:

a particular function, such that | f(xo+h)-f(xo) | = | f(xo)-f(xo-h) |

R69: D: we did a drawing that misled us

R77: D: but now neither the graphic one convinces me anymore...because we used the
symmetry respect to f(Xo)...no, no...that one is true

R79: I: what has been the conjecture brought up by the graph? Therefore...from the
graph you said...probably is f’(xo)

Daniele starts doubting about the graphic justification too, but then he realizes that the
important thing is the passage to the limit that brings to the same tangent line in (Xo, f(Xo))
They remain convinced that such a limit represents the first derivative of f in X, that is
the rate of change of the tangent line; they remain, therefore, considering the fact that the
two limits are the same; they only abandon the previously built hypothesis, because it
revealed to be false. It is interesting to observe that the non-validity of the hypothesis has

undermined the conviction of the fact
lim f(x, +h)— f(x, —h) — lim f (X, +hr2— f(x%,)

h—0 2h h—0

only for a while, after which the graphic approach has prevailed.
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The following step is to retake the algebraic manipulation, this time they add and
subtract f(xo), probably with the aim to obtain partially the expression of the standard
difference quotient; they separate the two expressions getting

i f ot = F06) (%) = f (% —h)
h—0 2h h—0 2h

from which they write
f06), F0%)
2 2

At the moment | asked them to explain me why the

h—0

was *(Xo)

they answered me they had seen it graphically.

5.1.4 Analysis through the tools of the Abductive System

Interpretation through the tools

Excerpt of the Abductive System
In my opinion it is the same thing... CONJECTURE with the role of answer to
the problem; therefore, C-FACT.

Namely, doing The C-FACT expresses a process, and it is
limf Kot =T —h) e as created by a PHENOMENIC ACTION guided
" 2h by a feeling, by a visual impact with the
lim 06 +h) = (%) graphic representation met for the limit
h—0 h Search of a ) ]

validating of the standard different quotient. The

hypothesis statement describing the C-FACT is an

\ UNSTABLE STATEMENT because the visual

impact seems to be insufficient to

validate the act of reasoning.
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Creation of a HYPOTHESIS through an
ABDUCTIVE ACTION guided by the
reinterpretation of the frame used for the
standard difference quotient: Daniele
translates the difference quotient as the
ratio between the vertical and horizontal
segments (see the two figures) and he shifts
such interpretation to the present situation.
The act of reasoning seems to be expressed
by a STABLE STATEMENT since the graphical
justification results sufficient for them.
Probably such a kind of hypothesis has
been also generated by the kind of function

sketched by Daniele. The choice of xo leads
to a sort of symmetry related to f(xo);
namely, f(xo+h) —f(Xo) and f(xo) —f(Xo-h)
which seem to be two segments of equal
length.

A new phase starts. | provoke
Daniele and Betta with the aim
to generate the doubt about the
adequacy of their graphical
justification
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lim f(x, +h)— f(xo—h):
h—0 2h

lim f (X, +hr)]— f(x,)

h—0

Search of a
validating
hypothesis

The C-FACT is not changed; and the
PHENOMENIC ACTION is always guided by a
visual impact. The act of reasoning is

expressed by an UNSTABLE STATEMENT.

f(xo+h)—f(xo—h): f(x, +h)—f(x,)

2h h

They start with algebraic manipulation to
prove the equality. After several
attempts, they go back to a graphic
exploration and they find out that such
equality would confirm the parallelism of
the two lines; this is impossible since
both go through the point (xo+h, f(xo+h)).
This brings the two students to refute the
aforementioned hypothesis.

Nevertheless, they go back to the graphic
exploration and their c-fact does not
change, because the graphic dynamics
reinforce their conviction that when x
goes to Xo the line becomes the tangent
line, therefore the limit represents the
first derivative like the limit of the
standard difference quotient.

What changes is the approach to prove
the c-fact, with a new manipulation of
the starting expression.

Creation of a HYPOTHESIS through an
ABDUCTIVE ACTION probably guided by a fact
already acquired, namely if
f(x) =g(X) VXe(Xo-0, Xot+d)
limy_xo (X) = limy_xo 9(X).

the hypothesis is expressed by an UNSTABLE

then

STATEMENT.
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The algebraic manipulation brings to
the expression

i FOo ) = 106) L £ (%) = F (% —h)

h-0 2h h0 2h

with the construction of a new
conjecture.

This act of reasoning take the connotation

lim f(Xo)_;(Xo _h) =f

h—0

(Xo)

of FACT in the sense that they justify it
through the graphical interpretation as they
did previously with the initial expression
and the graphic interpretation this time is
enough. A STABLE STATEMENT therefore
expresses the fact.

5.1.5 Francesca and Daniele (fixed point problem)

Francesca and Daniele visualize immediately on a graph the set of the fixed points
as the bisector line of the first and third orthant; the property is already present in their
cultural background: “the bisector line is the set of the fixed points”. The drawing itself
probably suggests the characterizing property of the fixed points which is, according to
Francesca, the belonging to the bisector line.

Therefore, there is the consideration of a fact: the set of the fixed points is
represented by the bisector line of the first and third orthant. The fact is implicitly
expressed by a stable statement, in the sense that Francesca and Daniele consider this fact
already acquired; as it would be already part of their cultural background. The subsequent
step is the consideration of a further fact that expresses a property: to be a fixed point
means to belong to the bisector line; in this case too, it seems not to need further proof,
being the consequence of the definition of the fixed points.

R1: Fr.: there must be an intersection between the function and the bisector line
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R3: Fr: if there is the fixed point there absolutely must be the intersection with the
bisector line.

From R1 and R3 it seems a positive answer has already been taken into
consideration, namely, the function has a fixed point. Such an attitude may be conveyed
by a didactical contract: “if they ask, probably there will be one”; or it is simply a choice
at the 50 per cent. Even in this case, like in Matteo and Marco’s protocol, the first step is
represented by the attempt to give an immediate answer from which to proceed.
Considering thefact of the presence of a fixed point, the subsequent step is represented by
the construction of a hypothesis, which may validate the fact, and which takes the aspect
of conjecture and therefore it represents a c-fact.

Francesca states: “there exists an intersection with the bisector line”; we are in
front of an abductive statement built through a deductive process, namely, it seems to be
led by the characterization (according to Francesca’s cultural background) of the fixed
point, that is translated by Francesca from f(x) = x to y = x. That means, if the function
has a fixed point, such a point, for its characterization, must stay on the bisector line
(note: my interpretation was confirmed later by Francesca). Therefore, the abductive
action may have been guided by the following deductive process:

VP eb—Pisfixed (bisthe bisector line)
Qeb

Q is fixed modus ponens

Summarizing:

1% step: consideration of the set of the fixed points as the bisector line

2" step: construction of the theory: “being a fixed point means to belong to the bisector
line” (happened by deduction)

3" step: consideration of the c-fact “3 a fixed point”; guided by a didactical contract or
by a simple choice at 50%. It is expressed by an unstable statement (such reasons seem to
be not sufficient to legitimate the conjecture); in fact Francesca looks for a hypothesis

that could validate the answer.
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4”‘45teg: consideration of a hypothesis: “the function intersects the bisector line”,
validating the c-fact. This second statement would explain the existence of a fixed point.
In fact, the belonging of a point to a bisector line is the equivalent, for Francesca, of
being a fixed point; therefore, if the function intersects the bisector line, the function has
a point in common with this line and therefore the first function has a fixed point too.

The abductive statement is an unstable statement, because thus far, Francesca
does not know if the function intersects the bisector line.

R5: Fr: if there weren’t (fixed points) it (the function) would stay all over or all under the
bisector line...the only case would be if the bisector line were the asymptote of the
function...

R6: Dan: but it is not possible

R7: Fr: ...but it is not possible because it is continuous...

R8: Dan: it is not possible because 1 is between...lI mean...the function in 1 exists...that
is, here it is included...(ndr: he writes a square parenthesis on 0 and on 1 on the x-axis
and he does the same thing on the y-axis)

R9: Fr: therefore the bisector line cannot be an asymptote, and then if it is not an
asymptote it must cross it for sure...

R10: Fr (talking to 1) probably we answered...if A is a fixed point it must have an
intersection with the bisector line...the only case for the contrary is if the bisector line
were the asymptote of the function...but, if the function is defined from [0,1] to [0,1]
included...the function is defined in 1 too, therefore at the most the point is (1,1) or it
Crosses it.

The proving process begins with the denial of the fact: “if there weren’t fixed
points...”, and it follows with the proof by deduction that it is not possible because of the
continuity of f in [0,1] onto [0,1].

This proof doesn’t seem to be sufficient; perhaps they feel the possible fallacy of the
visual impact they used in the proving process; and therefore there is the search of
something “mathematically acceptable”. The sign, at this point, plays an important role
due to the fact that the bisector line and the sketch of some possible functions evoke the

Theorem of the Zeros.
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R16: Dan: (he draws several functions, then he realizes that it is not like that) anyway,
there is one fixed point for sure...if it must take all the values and if we make it start from
here...if it must take all the values it must start from this point...from this...this...because
it can’t come back...to take all the values it must start from the maximum up to the
minimum...if we think of that theorem where if you have a point here and one here it must

go through here, for sure (see Figure 12).

Figure 12: Daniele’s drawings

: Fr: it is the Theorem of the Zeros...

Py
[T
~

a
N
~N

: Fr: oh yes...instead of the x-axis we have a line

: Dan: the bisector line...

A
N
0

Py
~
N

: Dan: (talking to me) is it enough in this way?...I mean, if it is a proof that can be

accepted or not (Daniele explains the proof)...by the moment that it must take all the
values of the Image, a > x b < x...(he corrects himself) f(a) > x f(b) < x (see Figure
13).

il 3,

Figure 13: Graphic aid for the proof
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R43: I: what is x?

R44: Dan: x is the bisector line, otherwise if b were here it could not take all the values
of the Image because the function could not do like this (and he traces a vertical line)...
R50: Fr: ah no...anyway, the theorem of the zeros shifted up...for example this is the line
X = 2 there is necessarily a point f(x) = 2 and therefore the same thing if we take the
bisector line as the line...there is a point that is over...one that is under...there must exist
necessarily a point that lies on the bisector line

R51: I: Why?

R52: Fr: because the function is continuous

R54: Dan: If | divide the bisector line in several intervals...

The proof continues with the attempt to adapt the proof of the theorem of the zeros to the

new situation (see the attached transcripts at the end of the work); the proof will remain

“technically incomplete”, but the conviction that the present situation is a modified
situation of the Theorem of the Zeros, gives them the certainty of the existence of the
fixed point. In this phase we can observe the ability of adapting a proving process that

brings to light an internalization (Harel) work of a cognitive process.

It is important to observe that in the evidencing phase we can find a sort of abductive
attitude, in the sense that Francesca and Daniele justify their idea to use the structure of
the proof of the Theorem of the Zeros because the graphic situation is analogous and the
x-axis is replaced by the bisector line.

Therefore, there is the construction of a C-FACT: it is possible to use the structure of the
proof of the theorem of Zeros, and the construction of the justifying HYPOTHESIS:

analogous graphic situation, and the x-axis is replaced by the bisector line.
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5.1.6 Analysis through the tools of the Abductive System

Excerpt

Interpretation through the tools of the Abductive
System

The set of the fixed points is

represented by the bisector line of the

I and 11l orthant

Need to
translate
such a fact
in a sort of
theory or
regularity

FACT created by a PHENOMENIC ACTION guided by
the necessity of visualization. The statement
describing the fact is a STABLE STATEMENT justified
by an already acquired knowledge, or just an
immediate translation of f(c) = c into y=x, and its
graphic representation seems to be enough to
justify the ACT OF REASONING.

Being a fixed point is equivalent to
belong to the bisector line of the |

and 11 orthant

CREATION OF A “THEORY” OR A REGULARITY created by
a PHENOMENIC ACTION guided the interiorization
(Harel) of a cognitive process: deduction.

The statement describing the FACT is a STABLE
STATEMENT, because the consideration of the

bisector line as the set of the fixed points and the

deduction

Vv P fixed > Pe b

Q fixed

Qeb (MODUS PONENS)

seems to be sufficient.
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The function has a fixed point

Now they need to find a
hypothesis that could
justify the c-fact

A PHENOMENIC ACTION, guided by a didactical
contract (if the problem asks such a question,
probably the function has a fixed point; or just a
choice at 50%) generates a CONJECTURE with the
role of the answer to the problem, therefore it
becomes a C-FACT.

The C-FACT is expressed by an UNSTABLE
STATEMENT, because Francesca and Daniele don’t
consider the didactical contract or a choice at 50%

to be good enough to justify the conjecture.

Exists an intersection between the

function and the bisector line

The need of
validating the
hypothesis
takes place

HYPOTHESIS created by an ABDUCTIVE ACTION guided
by the interiorization of a cognitive process:
deduction

vV P b(P) — P fixed

3 Q e gr(f) such that b(Q)

3 Q e gr(f) such that Q is fixed (MODUS
PONENS)

The HYPOTHESIS is expressed by an UNSTABLE

ABDUCTIVE STATEMENT, because she knows that if it
were verified, then it would legitimize the
existence of the fixed point. But she doesn’t know
if the function satisfies such a condition for sure.

It is possible to use the same
structure of the proof of the Theorem
of Zeros

They feel the need to
justify it

C-FACT created by a PHENOMENIC ACTION guided by a
visual impact and by their knowledge of the

theorem and of its proof.
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There is an analogous graphic ABDUCTIVE ACTION, which builds the HYPOTHESIS
situation, and the bisector line justifying the C-FACT. It is expressed by a STABLE
replaces the x-axis. STATEMENT because the graphic evidence

concerning the analogies with the known theorem

seems to be sufficient.

5.1.7 Alice and Roberta (fixed point problem)

R2: R: fixed point on the bisector line and therefore...

Roberta and Alice immediately state that the fixed point lies on the bisector line and then
they draw the line. A property like “P fixed point = P e bisector line” is already present
in their cultural background.

R3: A: (she draws the bisector line) therefore this is the (1,1) and (0,0). The idea

becomes sign (Figure 14)

(0.0)
(1,4)

Figure 14: Alice’s drawing of the bisector line

R4: R: The fixed point must be between these two points ...(and she signs the two points
(0,0) and (1,1) going along the bisector line)

Consideration of a fact: “the fixed point is on the segment with end points (0,0) and
(1,1).” Such fact seems to be legitimated by the property previously considered (namely,
the fixed points lay on the bisector line), and by the domain of f which is [0,1].
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R5: A: Exactly...but it could have only these two points [(0,0), (1,1)]; if it were in this
way (and she signs a concave function over the bisector line) therefore there is a fixed
point for sure, because there are these two points of the bisector line (and she signs (0,0)
and (1,1))
Consideration of two new facts:

1) *“The function has for sure two fixed points which are (0,0) and (1,1)”;

2) “And it has only those if the graph of f is done in a particular way”.
Both facts seem to be expressed by means of stable statements; in the first case Alice has
taken into consideration, a-priori, that the function starts from (0,0) and finishes into
(1,1); probably she has been conditioned by a visual impact with the graph she has
produced, and by the definition of the function in the problem. The second act of
reasoning is expressed by a stable statement, which is supported by a graphic impact.
R6: R: eh...no, because the function could start from here and from here.
What is a stable statement for Alice is an unstable statement for Roberta, who
immediately refutes Alice’s assertion showing that the function does not necessarily
starts from the point (0,0), but it can start from any point of the segment whose extremes
are (0,0) and (1,1).
R7: A: you are right, it is true; it is defined fromOto 1...
R8: R: oh yes...the function starts from 0 and then there is a point here for sure (she
underlines the segment from 0 to 1 on x-axis) and it arrives at x=1, therefore there is also
a point here for sure (she underlines the side of the square of vertexes (1,0) and (1,1))
(see figure 4).
R9: A: oh right...then it has to intersect the bisector line for sure...suppose that it does
like that...
The newly produced sign leads to the construction of a new fact: “The function intersects
for sure the bisector line.” This fact is expressed by a stable statement justified by
knowledge already possessed by the students, namely, “the continuous functions don’t
have gaps in their graph.”
R10: R: hmmm...the function must have a fixed point for sure...because it has to pass

from here to there.
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Construction of a fact “The function had a fixed point for sure.” The fact is justified
because the function intersects the bisector line.

Both Alice and Roberta seem to be arrived at the conclusion that the function definitely
has a fixed point; namely their act of reasoning is expressed by a stable statement.

From here the process becomes an evidencing process, in the sense that they don’t try to
establish the stability of their statement, since it is already stable for them, but they try
rearrange their “proof” in a way that can be considered acceptable by the others.

R27: A/R: then the function must start from 0 and have f(x) on this side and arrive at the
point of abscissa x=1 and f(x) on this side then...there is the bisector line that goes
through (0,0) and (1,1)

R33: A: (Alice writes) then P(0, 0<y <1) because the domain...

R34: R: it is defined from 0 to 1

R37: A (Alice writes) it must exist too...P; (1, 0<y <1), | would start with the limit cases,
P(0,0) and P; (1,1) or when (she goes with her finger from the point (0,0) along the
segment 0-1 on the y-axes, and she does the same with the point (1,1) downwards)

At this point they write on their protocol:

If the function f(x) goes through P(0,0), a fixed point is P; there could exist other fixed
points in the case that the function intersects the bisector line.

In the same way, if the function goes through the point P(1,1). In all other cases the
function will have to go through a point with abscissa 0 and a point of abscissa 1 (for
hypothesis). In these cases the ordinate of the point with abscissa 0 will have to be 0 <y
<1, and the ordinate of the point with abscissa 1 will have to be 0 <y <1. Being the
function continuous for any path satisfying the aforementioned conditions will have to
intersect the bisector line in at least one point (on the bisector line lie all the fixed

points).
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5.1.8 Analysis through the tools of the Abductive System

Excerpt

Interpretation through the tools of the
Abductive System

The fixed point must be between these

two points

FACT created by a PHENOMENIC ACTION guided by
the necessity of visualization. The statement
describing the fact is a STABLE STATEMENT
justified by an already acquired knowledge,
namely, “the fixed points are on the bisector

line”, as they claim in R1.

The function has for sure two fixed
points which are (0,0) and (1,1)

This act of reasoning owns a different role for
Alice and Roberta. According to Alice, this is
a FACT, expressed by a STABLE STATEMENT
justified by her conviction that the functions,
as defined in the problem, starts from (0,0) and
ends in (1,1). According to Roberta the
statement expressed by Alice is an UNSTABLE
STATEMENT, since the function does not
necessarily starts from (0,0) and ends in (1,1);
and for this reason it is a C-FACT, which
Roberta immediately refutes. Roberta could
contest the statement, probably because she
was able to use a transformational reasoning
(in sense of Harel’s) which allowed her to
imagine different situations of the graph of the

function f.
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The function intersects the bisector line
for sure.

FACT, created by a PHENOMENIC ACTION, guided
by a graphic exploration. The FACT is
expressed by a STABLE STATEMENT justified by a
knowledge already possessed by the students,
namely, the “continuous functions don’t have

gaps in their graphs.”

The function must have a fixed point for

sure

FACT created by a PHENOMENIC ACTION guided by
a deductive process:

Any point on the bisector line is fixed

The function has a point on the bisector line (seen

before)

The function has a fixed point  (MODUS PONENS)

The FACT is expressed by a STABLE STATEMENT,
since the preceding visual impact (regarding
the intersection between the function and the
bisector line) and the deductive process
mentioned above seem to be sufficient to

justify the act of reasoning.

5.1.9 Francesca and Serena (limit problem)

R1: S: h goes to zero...xo+h...

They immediately draw a graph tracing on the axis Xo, Xo + h, f(Xo), f(Xo+h)...

R2: S: f(xo+h)
She looks at it on the graph

R3: S: when h — 0 this gets closer here and also f(x.h)

[...]
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R7: S: anyway, this difference goes to zero...and if we separate them?...w
f(Xo+h) — f(Xo)...

There is the creation of a fact, but it seems this fact does not convince them...probably
they abandon such a idea and think instead of a strategy: “to separate the two addends”.
The choice is probably suggested by a previous knowledge related to the expression of
the standard difference quotient; in fact Francesca adds a and subtracts f(xp) with the aim
of obtaining a part of the expression of the standard difference quotient.

RS: F: f(xoh+ h) B f(x,)

and then we add it...

R9:F&S: let us write it down better: Iim1
h—0 2 h h 2 h h

f(Xo+h)_ f(xo)]+£(f(xo)_ f(xo_h)j

R10: F: this (referring to the first parenthesis) is our f’(xo) therefore %f’(xo)

A
[EEN

1
12: F: it will be a difference quotient as well...because if you look at the drawing...from

: S: that thing there (referring to the second parenthesis)...

o)

this you take off this and divide by h; from that you take off this and you subtract h,
therefore the difference should be the same thing...

At this point there is the creation of a new fact, probably guided by a visual impact very
similar to the standard difference quotient. There is also the construction of a justifying

hypothesis, which is based on a graphic interpretation of the difference quotient.

R13: S: then...1/2 f’(xo) — 1/2 Ihlrrg( f (;(0) - f(xoh— h)jthis goes to zero...

o)

14: F: hmmmm....

o)

15: S: in my opinion is wrong...ah...but wait...here there is —h therefore this becomes

+...then f'(xo)...

R19: F: yes...also because basing on my intuit | would have said that the limit would go

to f(xo)....therefore ( f(;((’) —~ f(xoh— h)] is the difference quotient
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Francesca explains to me what they did

R20: F: We did it very algebraically...and we said...first we add (@J and then we

subtract it...first we take out 1/2 %( f(xoh+ h)— f(x(;]— h)j | add and subtract %

therefore here taking it out, | have exactly the difference quotient, thus | have f* (Xo)
here...
R22: 1: here can | say that it is f’(Xo)?

R23: F: (f(x‘) _hh)_ f(XO)) let us change the signs...—%( fx)- fh(xo _h)j and we

R24: S: that the difference quotient can be (f(x0+hh)—f(xo)j but also

( f(x,—h)- f(xo)j

—h
R25: I: Why?
R26: S: because h goes to zero therefore —h goes to zero and thus even this is f’(xo), then

()4 (x)= £ (x)

N| -

5.1.10 Analysis through the tools of the Abductive System

Excerpt Interpretation through the tools of the Abductive
System
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...anyway, this difference goes to
zero(she refers to the limit of the

problem)

The conjecture does not convince
Serena, even though she has
formulated it. There is the
necessity to try another way. This
brings Serena and Francesca to
add and subtract f(x,) and it leads
to the expression

Iiml[M_M}l[ (%) _M]
\ 02 h h 20 h h

C-FACT created by a PHENOMENIC ACTION guided by a
graphic exploration that shows the getting closer to
the same point, for h— 0, of f(Xo-h) and of f(xo+h).
The statement describing the act of reasoning is an
UNSTABLE STATEMENT since for some feeling this

conjecture doesn’t convince Serena.

...that thing there (referring to the
second parenthesis)... it will be a
difference quotient as well

Search of a validating
hypothesis

C-FACT created by a PHENOMENIC ACTION guided by a
visual similarity with the standard difference
quotient expression. The ACT OF REASONING s
expressed by an UNSTABLE STATEMENT, since the

visual analogy seems to be not enough.

...if you look at the drawing...from
this you take off this and divide by
h; from that you take off this and
you subtract h, therefore the
difference should be the same
thing...

This hypothesis can be translated as

follows:

Both expressions represent the same

procedure

HYPOTHESIS created by an ABDUCTIVE ACTION guided
by the graphic interpretation of the difference
quotient. The HYPOTHESIS is expressed by a STABLE
ABDUCTIVE STATEMENT since the graphic
interpretation seems to be enough to justify the
hypothesis.

5.1.11 Alice and Marco (limit problem)

R2: A: at the end...it is the difference quotient...only that there is 2h instead of h...

There is the creation of a fact conveyed by a visual analogy with the standard difference

guotient.
R4: A: no...walit...
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R7: M: it is similar to the difference quotient...then...the difference quotient is...(they

(X +h)— (%)
h

think for a while and then they conclude) ...yes...yes it is similar

to...but there is not f(xo-h)
The fact is modified, and it becomes “it is similar to the difference quotient”
f(x,+h)—f(x,—h)

2h

R9: A: I write also the difference quotient.

At this point they write Ihlrrg

R12: M: oh yes...in other words we have the limit of two functions, | mean, the limit of

10 +h) (X20h+ h) minus the limit of w and we cannot say that is the limit of the

difference, so to speak, we take the result of this...

R13: A: but with the limit...what we arrive to say? Because...at the end...we know how to
calculate this limit...we know that the function is defined and differentiable, therefore we
know that is continuous, then we don’t need to do all the calculation of the limit...

In these first lines, they start saying that the expression is similar to the difference
quotient because of a visual analogy. There is, then, a recall to their cultural background.
They manipulate the expression and examine what they can say about each limit. At the

end they conclude such an approach will not bring them to anything concrete.

R17: A: You know what we can do? In P +h) = (%)

there was the graph to show

that it was the slope...
There is the search in their own cultural background of what they learnt about the

lim f(x, + h}:— f(X,)

h—0

R18: M: yes...of the line...
R19: A: perhaps this is related to the slope but shifted up or down...

They draw a function and reproduce on the graph the difference quotient (see Figure 15)
and they build a new fact guided by an already acquired knowledge.



134

seaqe o Ko Con. € (wot R) - £l
i h>0

i

4 (o 4 ?x)

‘?(vofﬂ ~ 1) -

phf A

Figure 15: Graphic interpretation of the limit of the standard difference quotient

R20: A: I mean...when h — 0...do you remember the graph?

[...]
R25: A: then..when h — 0...oh yes...this becomes the tangent line in this point
here...(Figure 16)

[...]

f(x, +h)—f(x,—h)

R31: A: now let us try to draw this ( o

) (see Figure 16)
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f(x, +h)—f(x,—h)

Figure 16: Representation of o

R33: A: in my opinion this could work as a difference quotient...

Based on the graphic exploration, the construction of a new fact occurred:

W F(Xg +h)—f(x,—h)
2h

R34: M: but the difference quotient is the slope of the tangent line...

R35: A yes...

works as difference quotient as well”.

f(x, +h)—f(x, —h)
2h

R36: M: and there, it goes...here what does this ( ) represent?

R41: A: It could represent the slope of the tangent line...

f (%, +h)— f(x, —h)
2h

Again the construction of a new fact, namely “the Ihm(] could be the

slope of the tangent line”.

R42: M: the tangent line in which point...?
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R43: A: We need to see in which point...then, if h goes to zero...let us see what happens
when h goes to zero...it means that...here there is a distance of 2h...between xo + h and
Xo—h
R45: A: when h goes to zero, this becomes zero and goes to Xo, this one becomes zero and
goes to Xo...therefore all the values go to Xo..while here (she refers to
f(x, +h)— f(X,)
h
h goes to zero goes to...wait...goes to zero...
f(x, +h)—f(x,)
h
RA47: Alice signs on the y-axis f(Xo+h)-f(xo) and f(xo)-f(Xo-h) (see figure 5)
f(x, +h)— f(x,—h)
2h

)...too...at the end they always go to Xp...because the numerator when

R46: M: here (referring to the expression ) it goes to...zero...oh...OK

R48: A: then...here we have

... f(xo-h) is equal to f(xo+h)-...

R49: M: minus @

At this point they try to find graphically f(xo-h)...but they realize they don’t arrive
at anything...

It is important to underline that the graphic exploration has led Alice and Marco to
state that the limit would represent the slope of the tangent line in Xo; such a statement
seems to be expressed by an unstable statement, since Alice feels the necessity to justify
it algebraically. The algebraic exploration, though, suggests a different result and this is
sufficient to make them to forget their graphical conclusion. Therefore, an algebraic
manipulation takes place in order to obtain some kind of expressions similar to the
standard difference quotient.

R51: A: but we can write it as..I mean the Ilimit of this one..
L'ﬂg f(x, + h)z—hf (x, —h)
addition and subtraction of limits in such a way to have inside of the expression

f (X +h)—f(xg)
h

...as a matter of fact we know the numerator, we can write it as

R52: M: OK...you take out %
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f(x, +h)—f(x,—h)
h

R54: M: do you want to have the difference quotient?

. ) 1.
Alice writes =Ilim
2 h—0

At this point they think for a while...they observe the graph they made...(see Figure 16)
R56: A: we could write...(she adds and subtracts f(xp)) and then we separate

f(Xo+h)_ f(Xo)_”m f(Xo_h)_ f(Xo)
h

h h—0

)the first become f’(xo) and the

it... L (lim
2 h-0

second one?...1 don’t know...
R57: M: isn’t it the difference quotient with the difference that there is a minus?

Therefore it is the same thing but considered at the other side...

f(X) = T (% —h) is like the standard difference

Creation of a new fact: “the expression

quotient with the only difference being that there is a minus before.

R64: A: then it could be zero...I mean...in both cases you arrive at the slope of the
tangent line here. Therefore, it is the same thing of doing the slope of the tangent line
here, minus the slope of the tangent line always here...

R68: M: yes. Zero.

The graphic interpretation has completely disappeared; they see in both limits the slope
of the tangent line in Xo but they don’t relate the algebraic interpretation with the graphic
one; the algebraic impact prevails, and they don’t realize that a limit equals to zero would
imply a tangent line parallel to the x-axis which would be in contrast with their graphic

representation.
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5.1.12 Analysis through the tools of the Abductive System

Excerpt

Interpretation through the tools of the

Abductive System

At the end ...it is the difference
quotient...only that there is 2h instead of

f (X, +h) = f(x, —h)
2h

h...(referred to

)

Very soon  Alice
realizes  that  the
expression is not the
difference  quotient,
but just similar to it.
The previous fact is
Y transformed into

Initially the act of reasoning seems to be
represented by a FACT created by a
PHENOMENIC ACTION guided by a visual
analogy with the standard difference
quotient. The fact is expressed by a STABLE
STATEMENT where the analogy with the
standard difference quotient seems to be

enough.

It is similar to the difference quotient.

FACT created by a PHENOMENIC ACTION
conveyed by a visual analogy with the
standard difference quotient; such analogy
seems to be enough to justify the STABLE
STATEMENT expressing the fact.

Perhaps this is related to the slope...but
shifted up or down...(referred to

i O =M= 06 =)
h—0 2h

C-FACT created by a PHENOMENIC ACTION
conveyed by a recall to an already acquired
knowledge about the relationship between
f (X, +h)—f(X,)

the Llrrg and the slope of

the tangent line. They shift this relationship

to the lim P +1) = 106 —h)
h—0 2h

a sort of translation of the line. The act of

imagining

reasoning is expressed by an UNSTABLE

STATEMENT since the internalization (Harel)
of the graphic interpretation of the limit of
the standard difference quotient seems not

sufficient to justify the C-FACT
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In my opinion this could work as a

difference quotient

There is an evolution in the act
of reasoning. From stating that
f(x, +h)—f(x,—h) is

the
2h
difference quotient to the
statement that
' f(x + h);f (% —h) can work

C-FACT, created by a PHENOMENIC ACTION
guided by a graphic exploration, namely 1)
the representation on the x-y axis of
f(x, +h)—f(x,)
h
h — 0 (already known by the students); 2)

and its dynamics when

the representation of

f(x, +h)—f(x,—h)
2h '
The C-FACT is expressed by an UNSTABLE

STATEMENT since a sort of analogy between
the two graphic representations seem to be
not enough to justify the act of reasoning.

lim f(x, +h)—f(x,—h)
h—0 2h
the slope of the tangent line.

could represent

The problem now becomes the point of
tangency. A graphic exploration takes
place bringing them to state that xy+h and
Xo-h go to Xo when h — 0, but the result
that the numerator of both expressions
f(xo+h) —f(xo) and

f(xo+h) —f(xo-h) go to zero when h goes to
zero leads them far away from the target
(to understand which the point of tangency
is); and they don’t realize that they
considered the dynamics of both
denominators from the graph and this
ended with the assumption of x,, while
they considered the result of both
numerators from an algebraic point of view
and this led them to state that it was zero.
This situation seems to destabilize Alice
and Marco who start an algebraic
manipulation in order to obtain, at least in
part, the expression of the standard
difference quotient.

C-FACT created by a PHENOMENIC ACTION
guided by graphic exploration and by the
analogy with a dynamics already known. It
is expressed by an UNSTABLE STATEMENT
since the means used seem not to be

sufficient to justify it.
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Creation of a FACT generated by a
at the end they arrive to separate ] )
f(x, +h)— () PHENOMENIC ACTION, guided by a graphic
and ) .
h exploration. It is expressed by an STABLE
(%)= F(% —h) and to state that STATEMENT, because the graphic exploration
h L.
v seems to be enough to justify the act of

reasoning.
is the difference

f(xo)_ f(Xo _h)
h

quotient only that there is a minus; namely,
it is the same thing but considered at the
other side.

5.2 Analysis of a lesson given by the professor

The analysis of the lecture is aimed at examining the structure of the teacher’s
dialogue, indicating creative abductive processes, and to compare these with the attitudes
observed in the students. The analysis follows the same procedure adopted for the
protocols: it is divided into two phases; the first phase shows a comprehensive
description of teacher’s behaviors in tackling the topic, in the second phase the creative
processes are detected and interpreted through the elements of the abductive system.

A table divided into three columns represent the structure of the second phase of
the analysis; the first column has been used to write the excerpts considered relevant to
the creative processes; the second column has been used to write the interpretation
through the tools of the abductive system in the teacher’s perspective; the third column
has been used to write the interpretation through the tools of the abductive system in the

student’s perspective.

5.2.1 The lecture

The lecture concerns the proposal of some tasks regarding the continuity and
differentiability of the one-variable functions. The following analysis proposes only some
parts of the lecture, having chosen the most significant parts related to the creative

abductive processes.
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The initial approach of the teacher consists of stating the definition of
differentiability, and it is written on the blackboard; this issue is introduced underlying

that the differentiability is the last topic seen by the student in the theory.

f:(a,b) >R Xo € (a,b)

f is differentiable in Xq

it 1im )= ()

X=X X=Xy

exists and belongs to R

The subsequent step is characterized by the geometrical interpretation, and the
problem is introduced by a question:
T: what does it mean from a geometrical point of view?

At this point he draws a graph

f(x)

f(Xo)

/ Xo X

Figure 17: First graph for the geometrical interpretation of the first derivative

F(x) - f(x)

The teacher reconsiders the expression saying: this object is named

0
difference quotient, justifying the term through the graphic and showing that at the
numerator there is the increment of f (note: he visualizes it on the graph)
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/
f(x) — f(Xo)

/ Xo X

Figure 18: Graphical visualization of the increment f(x)- f(Xo)

f(x)

f(Xo)

While at the denominator the increment of x (note: he visualizes it on the graph, too)

/
f(x) — f(Xo)

f(x)

f(Xo)

Figure 19: Graphical visualization of the increment x-Xo

The difference quotient, at this point, is interpreted as the slope of a tangent, which is

drawn on the graph

f(x)
f(x) - f(xo)

f(Xo)

Figure 20: The line through the points (xo, f(Xo)) and (x, f(x))

In this phase the gestures, the use of the graphs and the reference to them become
fundamental tools. The professor refers to the limit “imitating one the graph” the
approaching of the line while x approaches x, and showing the transformation of the line

into tangent line.
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Subsequently, he recalls another formula: Do you remember the formula of the
tangent line? (note: even in this case the introduction of a concept occurs with a question)
(%o, f(x0)) is

y = f(xo) + f(x0) (x-Xo0)
this because it is a line that goes through the point (xo, f(Xo)) and its slope is the first
derivative.

The basic idea is to link the expression
lim f(x)— f(X,)
=% X=X,
with its geometrical meaning, using the graphical visualization; and the further link
between the first derivative and the formal expression of the tangent line.

The teacher, at a certain point, feels the necessity to graphically reinforce the idea
of continuity, because for each step there is the intention to give a sense that goes beyond
the formalism; to this extent he compares two graphs (see Figure 21 and Figure 22)

A

\\

»

Figure 21: Discontinuous function R

Figure 22: Continuous function

»
|

underlying the fact that both present “gaps”, but the first represents the graph of a

discontinuous function while the second represents the graph of a continuous function,
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and stressing that the concept of continuity is related to the idea: “for small variations of
x we have small variations of y”.

The teacher’s attitude reflects a scheme of abductive type, since it starts with the
taking into consideration of a fact followed by the search of possible regularities
justifying the observed fact. With the same approach, the teacher compares the following
two graphs

Figure 23: Differentiable function Vx

Figure 24: Function differentiable not vx

emphasizing the concept that a differentiable function has always a tangent line; while in
the case of the Figure 24, in the minimum value the function is not differentiable because
in such point it doesn’t have a tangent line, or better, in this point it has a tangent line that
immediately changes the slope from this Way\ to this way /

The lecture follows with the question: How can we say that the first derivative of
x* is 2x? Don’t give the usual answer: the teacher said so, that’s all. The proof continues
with the application of the definition and further theorems.

Another abductive approach is present when the teacher emphasizes a quite
frequent mistake: Very often when you are asked to find where a function is
differentiable, you usually calculate the first derivative and then you study the domain of

it, and this set becomes the differentiability set of the function. For example, if you were
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asked to find where the first derivative of Inx is defined, | hope nobody will do the usual
thing: since the first derivative of Inx is 1/x, usually people answer ¥ x € R\ {0},
because 1/x is its first derivative, defined in R \ {0}, be careful!...the first
derivative...1/x...let’s say...do you remember when we introduced the functions, we said
that the function is defined by a law and by a domain , then this is the law (note: referring
to 1/x) but the domain is not brought by it, it is difficult to say that the first derivative is
defined for negative values, if the function is not defined there, is the problem clear? |
mean, this function is defined only for the positive x (note: he draws the graph of Inx).

A

\ ]

Figure 25: Graph of f(x) = Inx

Form here the teacher continues with further consideration about the domain of Inx.

A subsequent abductive approach has been found with the introduction of the theorem
linking the sign of the first derivative and the increasing or decreasing of a
function...Well...a possible consequence of the derivatives, for example, is: if the first
derivative is greater or equal to zero then the function is increasing (note: he writes the
following formalization)

f’(x) >0 = fisincreasing

more precisely ff(x) >0 <« fisincreasing

if the function is differentiable (and he arranges in the following way)

if f isdifferentiable
’(x) >0 < f isincreasing

is it clear?
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The theorem is obvious if you have understood what the derivative is: it is the slope of the
tangent line (note: he imitates it with his hands). If the slope is positive that means that
the function is going up (note: he imitates with his hands) if the slope of the tangent line
is negative then the function goes down (note: again he shows it with the hands).

The attitude is then an abductive one, since there is the presentation of a fact
(F(x) > 0 < f is increasing) and then there is the search of possible explanations, in this
case the geometrical interpretation of the first derivative as the slope of the tangent line
and its relationship with the graph of the function. The lesson continues presenting

several approaches of abductive nature.

5.2.2 Analysis through the tools of the Abductive System

Interpretation through the tools

Excerpt of the Abductive System
For the Teacher For the Student
A FACT created by a C-FACT expressed by an
/ PHENOMENIC ACTION guided |UNSTABLE STATEMENT,
/: by the need to make because the visual impact
i students understand the should not be enough.
: > concept of continuity

Figure 21 beyond the formal
definition. It is expressed

|
R by a STABLE STATEMENT,
:
|
|
|
|
|
|

J because the teacher owns

the cultural background

»
|

that justifies such a fact.
Figure 22

The graph in Figure 21
represents a discontinuous
function, the graph in Figure 22
represents a discontinuous
function.
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For small variations of x we
have small variations of y.

Creation of a HYPOTHESIS
through an ABDUCTIVE
ACTION guided by the
definition of continuous
function. The hypothesis
is stated by a STABLE
ABDUCTIVE STATEMENT,
because the definition
seems to be enough to
legitimate the hypothesis

Creation of a HYPOTHESIS
through an ABDUCTIVE
ACTION The hypothesis is
stated by a STABLE
ABDUCTIVE STATEMENT,
because the definition
seems to be enough to

legitimate the hypothesis

Figure 23

Figure 24

The function in Figure 23 is
differentiable everywhere, the
function in the Figure 24 is not
differentiable everywhere

FACT created by a
PHENOMENIC ACTION guided
by the need to make
students understand the
concept of differentiability
through its graphic
meaning. It is expressed
by a STABLE STATEMENT,
because the teacher owns
the cultural background

that justifies such a fact.

C-FACT expressed by an
UNSTABLE STATEMENT,
because the visual impact
should not be enough.

The function in Figure 24 is not
differentiable in the minimum
value because in this it doesn’t
have a tangent line, or better, in
this point it has a tangent line
that immediately changes the

slope from this way \to

this way

Creation of a HYPOTHESIS
through an ABDUCTIVE
ACTION guided by the
relationship between
differentiable functions
and the geometrical

meaning of the first

Creation of a HYPOTHESIS
It is expressed by a STABLE
ABDUCTIVE STATEMENT,
because the definition
seems to be enough to
legitimate the hypothesis
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derivative. It is expressed
by a STABLE ABDUCTIVE
STATEMENT, because the
definition seems to be
enough to legitimate the
hypothesis

Well...a possible consequence of
the derivatives, for example, is:
if the first derivative is greater
or equal to zero then the
function is increasing (note: he
writes the following
formalization)

f’(x) >0 = fisincreasing
more precisely

f'(x) >0 < fisincreasing
if the function is differentiable
(and he arranges in the
following way)

if f isdifferentiable

f’(x) 20 < f isincreasing

is it clear? The theorem is
obvious if you have understood
what the derivative is: it is the
slope of the tangent line

FACT created by a
PHENOMENIC ACTION guided
by the need to show the
sense and the need of the
first derivative. It is
expressed by a STABLE
STATEMENT, because the
teacher owns the cultural
background that justifies

such a fact.

C-FACT expressed by an

UNSTABLE STATEMENT, since
for the student, so far, it is
just the statement of a rule

(theorem)

The first derivative is the slope
of the tangent line. If the slope is
positive that means that the
function is going up (note: he
imitates with his hands) if the
slope of the tangent line is
negative then the function goes
down (note: again he shows it
with the hands).

Creation of a HYPOTHESIS
through an ABDUCTIVE
ACTION guided by the
relationship between the
geometrical meaning of
the first derivative and the
graph of a function. It is
expressed by a STABLE

HYPOTHESIS. It is expressed
by a STABLE ABDUCTIVE
STATEMENT, because the
visualization of the
dynamic behaviour of the
function seems to be
enough to legitimate the
hypothesis
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ABDUCTIVE STATEMENT,
because the visualization
of the dynamic behaviour
of the function seems to be
enough to legitimate the
hypothesis

5.3  Brief analysis using the reference system continuity

The idea of Continuity as it has been introduced by Garuti, Boero and Mariotti
(1998), and redefined by Pedemonte (2002) like Reference System Continuity has made
me think if | could use such a definition to look for possible continuities or breaks
between the creation process of a c-fact and the creation of the hypothesis justifying the
conjectured fact. Such a use of the “continuity tool” differs from its original utilization in
the sense that 1 am not interested in looking for possible breaks or continuities between
the conjecturing phase and the proving phase (in the manner intended by the researchers
who defined the Cognitive Unity), but in possible breaks or continuities between the
phenomenic actions and the abductive actions.. My aim is to understand if the continuity
between the tools used in the construction of the c-fact and the construction of the
hypothesis may facilitate this last step, or if, at this stage, such a continuity is irrelevant.

The analysis of the protocols has evidenced that the students who successfully
achieved a correct solution of the problem, not necessarily have maintained continuity
between the phenomenic actions and the abductive actions. The following excerpts are
examples of this phenomenon:

Marco and Matteo (fixed point problem)

In the conjecturing phase they build the conjectured fact, f probably has fixed
points, guided by a didactical contract (as mentioned in the analysis of protocol through
the tools of the Abdcutive System), while the hypothesis justifying the c-fact, the
continuous function in [0,1] intersect the bisector line, has been constructed by an

abductive action conveyed by a visual impact. In this case we can talk of break in the
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Reference System Continuity, since we have a register based on “contract”, for what
concerns the phenomenic action, and a register based on heuristics for what concerns the
abductive action.

A different situation is presented by Daniele and Betta, who achieved a correct
solution of limit problem but which have evidenced continuity between phenomenic and
abducitve actions:

Daniele and Betta (limit problem)

In the conjecturing phase Daniele and Betta state that: In my opinion it is the same

thing...

F (% +h)— (% —h) is the same as lim
2h h—0

The c-fact is created by a visual impact with the graphic representation met for the limit

Namely, doing lim f(x + hr)] - f(xp)

of the standard difference quotient. In the same way, the hypothesis: The two limits use
the same tools, has been created by an abductive action conveyed by a graphic
interpretation. In this case we are in front of continuity between the two stages.

For what concerns the Reference System Continuity (as defined by Garuti & al.,
1998; Pedemonte, 2002), the analysis of the protocols has evidenced the presence of such
continuity since the means employed by the students in the construction of the
conjectures are maintained in the evidencing process; the following excerpt is an example
of this phenomenon.
Alice and Roberta (fixed point problem)
R3: A: (she draws the bisector line) therefore this is the (1,1) and (0,0). The idea

becomes sign (Figure 14)

/O,o}

1 / (1,1)
A

e

y

'

4

Figure 14
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R4: R: The fixed point must be between these two points ...(and she signs the two points
(0,0) and (1,1) going along the bisector line)

Consideration of a fact: “the fixed point is on the segment with end points (0,0) and
(1,1).” Such fact seems to be legitimated by the property previously considered (namely,
the fixed points lay on the bisector line), and by the domain of f which is [0,1].

R5: A: Exactly...but it could have only these two points [(0,0), (1,1)]; if it were in this
way (and she signs a concave function over the bisector line) therefore there is a fixed
point for sure, because there are these two points of the bisector line (and she signs (0,0)
and (1,1))

In this part of the conjecturing phase Alice and Roberta use perceptive, graphic aids. In
the evidencing phase it is possible to find the same register, as it has show below.

R27: A/R: then the function must start from 0 and have f(x) on this side and arrive at the
point of abscissa x=1 and f(x) on this side then...there is the bisector line that goes
through (0,0) and (1,1)

R33: A: (Alice writes) then P(0, 0<y <1) because the domain...

R34: R: it is defined from 0 to 1

R37: A (Alice writes) it must exist too...P; (1, 0<y <1), | would start with the limit cases,
P(0,0) and P; (1,1) or when (she goes with her finger from the point (0,0) along the
segment 0-1 on the y-axes, and she does the same with the punt (1,1) downwards)

At this point they write on their protocol:

I the function f(x) goes through P(0,0), a fixed point is P; There could exist other fixed
points in the case that the function intersects the bisector line.

In the same way, if the function goes through the point P(1,1). In all other cases the
function will have to go through a point with abscissa 0 and a point of abscissa 1 (for
hypothesis). In these cases the ordinate of the point with abscissa 0 will have to be 0 <y
<1, and the ordinate of the point with abscissa 1 will have to be 0 <y <1. Being the
function continuous for any path satisfying the aforementioned conditions will have to
intersect the bisector line in at least one point (on the bisector line lie all the fixed

points).
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6. DISCUSSION

The analysis of the protocols has highlighted the presence of creative abductive
processes. The importance of these kinds of processes in mathematics, but more generally
in the sciences, will be discussed in the first section of this chapter. The existence of
abductive processes in the students’ works also brings to light the necessity to wonder
which elements may promote such a method of reasoning; to this extent the following
three sections are dedicated to the analysis of three different conditions, which seem to
enhance the manifestation of creative abductive processes. Briefly, these conditions are:

1. A didactical contract that encourages and emphasizes creative processes aimed at
understanding how things work in mathematics (paragraph 6.2).

2. The chance of favoring (with an appropriate choice of tasks) transformational and
perceptual reasoning (Harel, 1998) to pass from the phase of exploration to the
phase of creative abductive act of reasoning (paragraph 6.3).

3. The chance of favoring (with an appropriate choice of tasks) the “reference
system continuity” between the conjecturing phase and the evidencing phase, as a
facilitating condition for the success of the student, and therefore of his or her
satisfaction to fulfill the requirement of the task (paragraph 6.4).

Finally, the experimentation has been conducted with a particular sample of students
(paragraph 6.5), since it was necessary to create the optimum conditions in order to study

the manifestation of abductive processes and the role of the aforementioned factors.

6.1 The role of abduction in sciences

Thomas Huxley, the famous biologist of the second half of the nineteenth century,
talked about retrospective prophecy to signify the inquiry in the relationship between the
cause and effect of a phenomenon, meant as the proceeding backwards, trying to abduce,
from what one sees, what may have caused said phenomenon.
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Abduction is fundamental in the sciences which study the past: the historian draws
the follow-up of the events from the documents and from the proofs that have come down
to us; the archeologist goes back to the lifestyles of the ancient populations using what
remains of their architectonical structures, or of their utensils; the paleontologist
reconstructs the aspect of a prehistoric animal from the fragments of its skeleton and of
its teeth, and thinking over these few elements he may decide if the animal is aquatic or
terrestrial, if it is carnivorous or herbivorous, and so on.

Huxley asserted that the method of the retrospective prophecy is innate in each of
us since any daily action is based on the common sense consideration that a certain effect
implies a certain cause. But the English scientist went beyond this, claiming that if such
method is valid for some sciences, then it has to be valid for all of them.

The Scottish doctor, Joseph Bell, who explicitly referred to the method of the
retrospective prophecy, argued that the precise and intelligent identification and the
taking into consideration of the smallest differences is the real essential factor in all
correct diagnosis. On the other hand, as underlined many times in the scientific field,
even the sharpest sense of observation, accompanied by memory and imagination,
requires, to arrive at the target, a prepared mind from the cultural point of view and a
readiness to associate in a coherent manner the available elements. Bell claimed that there
are many eloquent and instructive signs, but they require a prepared eye to be identified.

The purpose of this preamble is to underline the fact that an abductive attitude has
probably an innate aspect based on common sense, as a natural inclination of the human
learner who seeks to understand and to validate an observation; but on the other hand, as
Simon (1996) says about transformational reasoning, we could also say about abductive
processes, that "this inclination, like many other inclinations (the desire to draw what one
sees, to find patterns in one's world of experience) must be nurtured and developed".

It is therefore necessary to stress that the abductive processes met in the analysis
of the protocols cannot be related to an inclination of the human nature alone, but they
probably depend on the scholastic and extra-scholastic experience of the student. The

following sections will consider some of the issues related to this scholastic experience.



154

6.2 The role of the didactical contract

In the specific case of this research there are two didactical contracts to be
considered: the first one, between teacher and student, and the second one between
student and researcher.

Student and Researcher: For what concerns my role, it is important to underscore that

before being the researcher involved in this project, | am the Teaching Assistant of the
course of Calculus the students are taking. Throughout the semester, the students and |
will share three-hour lesson each week, and furthermore any office hour time they will
consider necessary, during which they will be able to ask for further explanations of the
exercises, or of the theory behind the lesson.

The three-hour lesson is divided in three phases; during the first phase I will
suggest some exercises on which the students will work autonomously, alone or in
groups; they will freely decide which working groups to form, I will circulate through the
classroom intervening only when the students request. From the beginning | emphasize
that it is important they try to solve the problem with any means they believe correct;
they do not have to be afraid to make mistakes, since they will not be judged for that,
what it is important is their desire to understand and to do their best. The chance to call
me and to ask me questions personally, gives the opportunity even to the most reticent
students who in front of the class would not feel comfortable for fear of being judged for
their questions. The first phase usually takes about two hours, as already said | continue
to underline the importance to feel free to make mistakes, to ask questions, to exchange
ideas with other working groups, to be unafraid to change strategies if they find out they
are following an incorrect path, and finally that I will not continue second phase until |
can determine that all of them have given the work their best efforts..

In the second phase, | ask students to show their solutions, leaving them
completely free to decide if they want to do so or not; in the previous phase | had the
opportunity to see the various attempts made by the students, to listen to their difficulties
and perplexities; therefore | have been able to ascertain an idea of the important issues |
have to touch on if they do not emerge from the solutions proposed by the students. The
solutions will be written on the blackboard and together will discuss their correctness; in
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this phase the formalization will not be considered the most important thing, but
emphasis will be given to the correctness of the process. The last phase is used “to make
the point of the situation”; the problem is summarized and the correct solutions,
previously considered, are rewritten in a more structured way.

Student and Teacher: after attending some of the teacher’s lectures, and having talked

with him, | realized that one of the most important messages he wants to give to his
students is that, beyond the formalization, he would like his students to understand how
things work, especially from a geometrical point of view. An example given to me by the
professor is the approach taken by the theorem linking the sign of the first derivative and
the increasing and decreasing of the function. From one side, he uses the geometric

interpretation of the first derivative and shows that if the

tangent line has this inclination therefore the function is necessarily

increasing and if the line has this inclination \

therefore the function is necessarily decreasing

After having introduced the formula of Taylor, the professor underlines that from f(x) =
f(xo) + F'(Xo) (X-Xo) + 1/2 f(xo) (X-X0)? + ..., the expression f(xo) + f’(Xo) (X-Xo) represents
the approximation of the first order of f(x), where f’(xo) gives the slope upwards or
downwards; while the expression  f(xo) + f(xo) (X-Xo) + 1/2 f7(Xo) (X-Xo)* is the
approximation of the second order where ’(xo) is the coefficient of a parabola and
therefore it gives the convexity of the function. In this case the professor told me that he
proceeds with a formal proof (one of the few) showing it as a consequence of the
Lagrange theorem, because he considers this proof quite simple and because it allows
showing a very frequent mistake made by the students who very often state that f’(x) =0

A
< f(X) is constant.

To this extent, the teacher gives the following example S

\
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underscoring that they incorrectly apply the Lagrange theorem, which is instead
applicable only to the function defined in one interval.

The formalization is then applied when is considered quite simple to be understood and
when it is useful for the understanding of a further concept. Following this approach, the
teacher explains why if f'(xo) is the first of the derivatives different to zero and n is odd
then the function does not have a maximum or minimum, while if n is even then we have
to look for the sign of f(xo). In this case he does not make any formal proof but he recalls
again the Taylor formula and asserts that if n is odd then the approximation of the

function has

this kind of graph / or \ while if n is even the graph is like \/

or A and then we will need to look for the sign to understand if we have a
maximum or a minimum.
Furthermore, the analysis of the teacher’s lecture brought to light what | defined as an
Abductive Scheme. By means of this definition | want to describe the teacher’s attitude
adopted in some steps of the didactical transposition, when the teacher wants to convey a
creative process, which is already known by him, though. The Abductive Scheme has the
following structure:
1% step: Proposal of an act of reasoning;
2" step: For the teacher the act of reasoning has value of fact, since he knows a-
priori its truthfulness or falseness; the statement expressing the fact is therefore a
stable statement. For the student the same act of reasoning becomes a c-fact,
expressed therefore by an unstable statement and consequently needing a
hypothesis validating or refuting it.
Besides the previously discussed reasons, another aim of the teacher is to avoid an
Authoritarian Scheme (Harel, 1998) where the student uses, as validating justification,
the assertion “it is true because the teacher said so.” The use of the term Abductive
Scheme, is necessary in order to distinguish it from the definition of Abductive Process,

as it has been defined in this research. The process utilized in the didactical transposition
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can be defined as a “simulation of a creative process,” since the teacher already knows
what to build and which hypotheses to use in order to validate or refute the constructed
fact.

Finally, it is also important to stress the kind of didactical contract related to the
oral exam; the students know that to pass they need to show their understanding of what
constitutes the base of a theorem, and they need to show their ability to demonstrate in a
constructive way the solution to a problem, rather than repeating a well structured formal
proof without demonstrating their understanding of said proof.

Concluding from the analysis of the didactical contract, it is possible to claim that
during the first year of the Calculus course, the two fundamental phases we work on are
the conjecturing phase and the evidencing phase'’, while the structuring phase, meant as
formal arrangement, is employed when it is considered quite simple to understand or as a
tool to facilitate the understanding of a further concept.

The same idea is at the core of my research, and the two exercises given to the
group of participants follow this line; in fact the participants were not asked to produce
any particular “structured solution,” my aims being:

a) To be coherent with the didactical contract.

b) To leave the students completely free to decide their solution process and to
autonomously evaluate the acceptability of their solution for the learning community,
since many students are not necessarily persuaded by deductive proofs (Martin and Harel,
1989; Chazan 1993).

Concerning this last point, the students have shown their idea about proof as a tool
that requires creativity, and with the role of validating a statement, and where hypotheses
are means arising a-posteriori with the aim to explain in order to validate or refute a
conjectured fact.

From the analysis of the protocols, and that of the didactical contract we can
conclude that the creative abductive attitude, met in the students, has probably been

7 To explain evidencing phase | refer to Harel’s definition of Proof Scheme: “By proving we mean the
process employed by an individual to remove or create doubts about the truth of an observation;” and such
process includes two sub-processes defined as Ascertaining and Persuading. Ascertaining is the process an
individual employs to remove her or his doubts. Persuading is the process an individual employs to remove
others’ doubts about the truth of an observation.
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influenced also by their experiences with a didactical contract that encourages a certain
kind of approach, like understanding how things work, the making of connections among

mathematical ideas, and creating conjectures and validations of mathematical ideas.

6.3  Perceptual, Transformational Reasoning and abductive process

Through the analysis of the students’ work, it has been possible to observe the
importance of the Transformational Reasoning®® and Perceptual Reasoning®®. Many c-
facts or conjectures have been created by actions guided by visual impacts, or
transformational reasoning, as shown by the following excerpt:

R7: Matteo: How can we find this fixed point?
They try to understand which the fixed points are, and they say:
R8: a fixed point is here, another one is here... (see Figure 7) and they arrive at the

conclusion that the fixed points lie on the bisector line.

Then

Figure 7. Representation of the fixed points

The construction phase of a possible theory is characterized by a graphic
exploration. The graphic aid comes into this: Marco and Matteo, led by the squares on the
paper, start identifying the fixed points with ones of the vertexes of the squares, because
they satisfy the condition to have the same coordinates, and from the visualization in the

'8 Transformational observations involve operations on objects and anticipations of the operations’ results.
They are called transformational because they involve transformations of images — perhaps expresses in
verbal or written statements — by means of deduction. (p. 258)

19 The perceptual proof scheme is characterized by perceptual observations made by means of rudimentary
mental images — images that consist of perceptions and a coordination of perception, but lack the ability to
transform or to anticipate the results of a transformation. (p. 255)
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discrete they go to the continuous, hypothesizing that if it is valid on the vertexes you can
see, it will be valid for all the “sub-squares” which is made by. Marco and Matteo have
the following definition of fixed point: (c, f(c)) with f(c) = c; therefore c is the “x” and f(
c ) is the “y”; the subsequent step is represented by their statement that the fixed points
are the ones that have “the x equals y” and the y represent it graphically as vertexes of the
square of the paper; the idea that the point has the same coordinate allows Marco and
Matteo to sign them on the vertexes of the square on the paper. Therefore, the idea is
translated in sign, such a sign probably allows a new step, it visually suggests the passage
from discrete to continuous...they probably realize, thanks to a visual factor, that
between the square represented by the first square of the paper and the second one there
are other infinite squares whose vertexes will represent fixed points. Therefore, they draw
the line connecting these points; always realizing graphically that what they have just
drawn is the bisector line of the I and Ill orthant and therefore there is a shift to the
interpretation of the fixed point represented by the passage from f(c)=c to y = x (Again
the sign is a source of thought. A dynamic that goes from outside to inside). There is an
identification of the set of the fixed points with the bisector line of the I and Il orthant.
Therefore in the passage from the discrete to the continuous the graph becomes a
source...meant as a new source of thought.

[...]

R17: Matteo: by contradiction we take ‘a’ that is greater and =0 and ‘b’ minor, now we
say by absurd it doesn’t go to, at this point ‘a’ will take in this point here any point in the
middle and that a =y, therefore a point in which y > x always because in a first moment
we said that it was greater therefore y must be greater than x and in this other little point
here and here and here it will always be greater strictly greater we arrive here where it
must be greater than x, at this point we have to take all these points here; its value in 1
cannot be less than 1, equal 1 or more than 1 because it must stay in this interval here,

therefore it is absurd. (Figure 9)
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Figure 9. Matteo and Marco’s graphic attempts

In these two excerpts we can observe the importance of the visual impact, meant as the
graphic aid employed to build the conjectures, and the transformational reasoning that
enhances the evidencing process. In terms of the proof schemes, this work raises a new
issue, in the sense that in Harel’s work the problem is tackled mainly from an evidencing
point of view while in the abductive system | am proposing here, it takes into

consideration the conjecturing face of the process of proving.

6.4  Reference System Continuity and abductive reasoning

The analysis of the protocols has brought to light that it is not possible to relate
successful students and continuity between the phenomenic action and abductive action,
since it was possible to meet success both in the case of continuity and break.

On the contrary, the analysis of the protocols has highlighted the presence of
“reference system continuity” (the one considered by Garuti, Boero & Mariottti, 1996;
what has been defined as “cognitive unity of theorems”), while it has not been possible to
make an analysis from the point of view of the “structural continuity” (Pedemonte, 2002),
since the research was based, as previously mentioned, on the conjecturing and
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evidencing process and not on the structuring one. Concerning the reference system
continuity, the search is done in a narrower process, namely, in the two phases that
precede the final step related to the deductive structuring of the proof; the analysis has
evidenced the presence of such continuity, as shown by the following example:

In Daniele and Betta’s protocol about the exercise on the limit, there are both a graphic
and heuristic approaches in the conjecturing phase, which are used in the evidencing
phase as well; as evidenced by the following excerpt.

R1: D: xot+h...

R2: B: f (Xo)...

R3: D: in my opinion it is the same thing... when you do the limit of the difference

(X +h) = (%)
h

quotient, you do LIFT(} ...this minus this over h...

He signs on the graph the vertical and the horizontal segments (see the red segments in
figure 10)

l L !
| Yoohl:

f(Xo +h)_ 1:(Xo)

Figure 10. Daniele’s graphic interpretation of .

R4: D: (note: he signs on the drawing done on the protocol, this | divided by this—)
R5: B: because f(xo + h)...
R6

(2]

: D:_minus f(Xo)...Is this
R7: B: Ah...OK...ours would be this (see the red segments in the figure 11) over 2h...it is

the same thing...



162

f (X, +h) = f(x, —h)
2h

Figure 11. Graphic interpretation of

R8: D: therefore...it would be h— 0....how much is this?....eh...it will be the slope of the
tangent line...

R9: B: namely...the first derivative

R10: D: in Xgq

At this point they explain to me their solution to me:

R16: B: this is equal to this (they indicate the two limits...)...we done it graphically (i.e.,

f(x, +h)—f(x,—h)
2h

R17: D: I mean, we do this...it would be the ratio between this difference / and this one

Betta indicates and what they have highlighted graphically)

— and in our case it would be the ratio between this difference / and this one —
therefore, Xo + h —(Xo — h) that would be 2h...and this one that would be f(xo + h) — f(xo —
h)...therefore, the limit for h that goes to zero would be...I mean both go to x, (note: he

shows it to me on the graph).

The central point of the “reference system continuity” lies in the transitional phase
from conjecturing to persuading; many times the unity is broken in this passage. The
protocols considered in this research have revealed the presence of unity; more precisely,
the students’ works evidenced that, those who made a correctly reasoned conjecture,
then, have arrived successfully at the evidencing phase. Such a phenomenon may be
explained by the typology of the proposed exercises, in the sense that the elements used

in the conjecturing phase can be used also in the evidencing phase.
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6.5 The Sample

The experimentation has been conducted with a particular sample of students,
since it was necessary to create the best conditions in order to study the manifestation of
abductive processes and the relationships between these processes and the
aforementioned factors. The sample taken into consideration, then, is not casual: since the
students voluntarily offered to participate in the project, and these students are the
students who positively accepted such a challenging situation. Nevertheless, for what
concerns the didactical implications, | hypothesize that, since the creative abductive
processes don’t seem to be an attitude of a particular elite of subjects (as evidenced in
section 1), what has happened with a particular sample of students may be extended to a

larger population of students, if the same aforementioned conditions are created.
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7 CONCLUSIONS

The Abductive System has been created with the aim of providing some tools,
which could identify and describe possible creative abductive processes students
implement when they perform conjectures and proofs in Calculus. The issue of creativity
in the hypothesis creation process led me to consider Charles S. Peirce’s work and his
definition of Abduction. Subsequently, | realized that the definition of abduction, as
given by Peirce, was not sufficient to frame and analyze potential student creative
processes, since Peirce’s abduction referred to the creation of a hypothesis that could
explain an observed fact ?°; while students, very often, are confronted by problems with a
direct question, which means the solver not only has to find hypotheses justifying a fact,
but also has to look for a fact to be justified. This particularity generated the need to
analyze the abductive processes under a new light, in the sense that the nature of the fact
and the connections between hypothesis and fact have to be considered in a different way
than the manner proposed by a standard abductive process (this relationship will be
explained later in the description of the Abductive System).

The construction of my framework has been also influenced by Cifarelli’s
approach to the concept of abduction. His attention is focused on the abductive inference
as a tool to enhance the search for further strategies when the application of a previous
solution does not work; therefore the researcher is interested in the role such a process
plays on the problem-solving activities.

Reexamining the facts, in Peirce’s abduction the fact is a tangible observation: the
fossils far in the interior of the country, the white beans on the table; while, for Cifarelli
the fact may also be represented by something that happens (see example about Marie’s
solution, in the core of the research chapter). This last point of view gave me the impetus

 |n an abductive process a “starting fact” is always considered and it is always true.
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to reflect on a new interpretation of the typology of abduction, where the fact is also
represented by a strategy/procedure or regularity.

The result of all previous considerations has been the construction of the
Abductive System whose elements are {facts, conjectures, statements, actions}.

For fact | adopted the definitions of Collins’ Dictionary: (1) referring to
something as a fact means to think it is true or correct; (2) facts are pieces of
information that can be discovered.

For conjectures | adopted the definition given by Webster’s dictionary, conjecture
is an opinion or judgment, formed on defective or presumptive evidence; probable
inference; surmise; guess; suspicion.

The conjectures assume a double role of:

1. Hypothesis - an idea that is suggested as a possible explanation for a particular
situation or condition.

2. C-Fact (conjectured-fact) - final answer to the problem, or answer to certain steps
of the solving process.

Statements divided into the three following categories express Facts and Conjectures:

1. Stable statements
2. Unstable statements
3. Abductive statements

A stable statement is a proposition whose truthfulness and reliability are guaranteed,
according to the individual, by the tools used to build or consider the fact or conjecture
described by the proposition itself. Namely, the truthfulness depends directly on the tools
employed in the construction phase (E.g. a “visually-based” fact: the validity of the
proposition describing the phenomenon is justified by a visual perception).

An unstable statement is a proposition whose truthfulness and reliability are not
guaranteed, according to the individual, by the tools used to build or consider the
conjecture described by the proposition itself. Namely, the tools used in the creation

phase are not sufficient for the solver to consider the conjecture described by the
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proposition as being definitively true. The consequence of this is the search of a
hypothesis, and / or an argumentation that might validate the aforementioned statement.

An abductive statement is a proposition describing a hypothesis built in order to
corroborate or to explain a conjecture. The abductive statements too, may also be divided
into stable and unstable abductive statements. The former, according to the solver, state
hypotheses that do not need further proof; the latter require a proof to be validated.

It is important to clarify that the definitions of stable?* and unstable statement are
student-centered, namely, the condition of stable and unstable is related to the subject:
what can be stable for one student may represent an unstable statement for another
student and vice versa; not only that, but the same subject may believe stable a particular
statement at a certain point of their scholastic career, and this may become unstable later
on when their cultural knowledge base of structured mathematical knowledge increases
(e.g.; she or he learns new mathematical systems; new axioms and theorems).
Furthermore, a stable statement may become unstable, inside a similar problem-solving
process, not because the student is convinced of that, but for a “cultural contract”;
namely, the student may recall their scholastic experience and remember that a statement
is considered stable if it is justified inside a precise mathematical system supported by
axioms, and theorems; thus they will analyze the tools employed for verification if they
satisfy such conditions. Another situation leading the student to reconsider a statement
from stable to unstable is the “didactical contract”; the subject might believe the visual
evidence to be sufficient in order to justify a conjecture, but the intervention of the
teacher could underline its insufficiency and therefore the student would find themselves

looking for new tools. Furthermore, the same statement may transform from unstable to

1The concepts of stable and unstable are related, moreover, to the mathematical context. In Euclidean
Geometry if a statement is stable, the problem will be only to find the tools to prove it. Namely, in
Euclidean Geometry it is enough to find few variations of “targeted” drawings to guarantee the stability of
a statement. In Arithmetic the problem is more complex; it is sufficient to think of Goldbach’s conjecture.
Goldabach’s original conjecture (sometimes called the “ternary” Goldbach conjecture), written in 1742 in a
letter to Euler, states “at least it seems that every number that is greater than 2 is the sum of three primes”.
Note that here Goldbach considered the number 1 to be prime, a convention that is no longer followed. As
re-expressed by Euler, an equivalent form of this conjecture (called the “strong” or “binary” Goldbach
conjecture) asserts that all positive even integers > 4 can be expressed as the sum of two primes. Not only a
proof has not been found yet, but also, even though many millions of even numbers have satisfied such
property, we are still not sure of its validity.
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stable inside a similar process because the subject follows the mathematician’s path: they
starts browsing just to look for any idea in order to become sufficiently convinced of the
truth of their observation, then they turn to the formal-theoretical world in order to give
to their idea a character of reliability for all the community (Thurston, 1994).

Behind any statement there is an action. Actions are divided into phenomenic actions

and abductive actions. A phenomenic action represents the creation, or the “taking into

consideration” of a fact or a c-fact: such a process may use any kind of tools; for
example, visual analogies evoking already observed facts, a simple guess, or a feeling,
“that it could be in that way;” a phenomenic action may be guided, for example, by a
didactical contract or by a transformational reasoning (Harel, 1998). An abductive action
represents the creation, or the “taking into account” of a justifying hypothesis or a cause;
like the phenomenic action, they may be conveyed by a process of interiorization (Harel,
1998), by transformational reasoning (Harel, 1998) and so on.

The Abductive System could be schematized in the following way: conjectures
and facts are ‘act[s]} of reasoning’ (Boero 1995) generated by phenomenic or abductive
actions, and expressed by ‘act[s] of speech’ (ibid) which are the statements. The
adjectives stable, unstable, and abductive are not related to the words of the statements
but to the acts of reasoning of which they are the expression. Hence, the only tangible
thing is the act of speech, but from there we may go back to a judgment concerning the
act of reasoning thanks to the adjectives given to the statement. Finally, for two different
subjects the same statement may be stable or unstable. Therefore, two people may
achieve the same act of reasoning and judge it by a different method.

At the base of the construction of the Abductive System there is also the intention to
show that the creative processes own some components, and to separate these processes
from the belief that it is not possible to talk about it because it is something indefinable
and only comparable to a “flash of genius”. The common denominator with Peirce’s
work is the philosophic spirit on which both works are based. Peirce wanted to legitimate
the fact that abduction is a kind of reasoning along with deduction and induction, in

contrast with many philosophers who regard the discovery of new ideas as mere
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guesswork, chance, insight, hunch or some mental jump of the scientist that is only open
to historical, psychological, or sociological investigation.
The research questions leading my work are:

1. Are the definitions of abduction, already given, sufficient to describe creative
processes of an abductive nature? Or, is a broader definition of abductive process
needed to understand some creative students’ processes in mathematics proving?
If so, what is that definition?

2. Isone’s certainty about the truth of an assumption an indication of an initiation of
abductive reasoning in her or his process? Namely, how important is the level of
confidence of the constructed answer in guiding an abductive approach?

3. Is there continuity between the cognitive “tools” one uses to build a conjecture
and the means one uses to establish its validity?

4. Which elements convey an abductive process? In particular, does transformational
reasoning facilitate an abductive process?

The definition of Abductive System allows the researcher to analyze a broader spectrum
of creative processes than those covered by the already given definitions of abduction,
and the experimental phase revealed to show the presence of those components | have
given a name inside the Abductive System.

The analysis of the data through the tools of the Abductive System allowed answering to
the previous questions. Indeed the Abductive System, in general, is a possible answer to
the first question, having broadened the definition of abduction and the distinction
between stable and unstable statements probably guide the way to a possible conclusion
for the second question. When an act of reasoning is expressed by an unstable statement,
the subject needs to find a hypothesis that could validate or confute it.

Regarding the third question, it has been possible to find the presence of
“reference system continuity” (Garuti, Boero & Mariotti, 1996; what has been defined as
“cognitive unity of the theorems”), but it has not been possible to make an analysis from
the “structural continuity” (Pedemonte, 2002) point of view, since the research has been

based on the conjecturing and evidencing process and not on the structuring phase, meant
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as that process of deductive arrangement; in fact, the participants in the research were not
asked to produce any particular “structured” solution; my aim being to leave the students
completely free to decide their solution process, and to autonomously evaluate the
acceptability of their solution for the learning community.

It is important to underline that “the reference system continuity” has probably
been favored by the kind of the problems proposed to the students, in the sense that the
elements used in the conjecturing phase could be used in the evidencing phase, as well.
The last question brings to light the issue of the role of the transformational reasoning (as
defined by Harel, 1998) in facilitating a possible abductive process; the research has
confirmed that perceptual and transformational reasoning have played a fundamental role
in the construction of both conjectures (c-facts and hypotheses) and facts.

There is a further factor we need to take into consideration, which is the typology
of the sample; it cannot be defined as a casual sample, since the students voluntarily
offered to participate in the project, and probably were those students who positively
accepted a didactical contract that encourages an approach promoting the understanding
how things works, the making of connections among mathematical ideas, creating
conjectures and validations of mathematical ideas, rather than a formal deductive
approach. Nevertheless, regarding what concerns the didactical implications, |
hypothesize that, since the creative abductive processes don’t seem to be an attitude of a
particular elite of subjects, what has happened with a particular sample of students may
be extended to a larger population of students, if the same previously mentioned
conditions are created.

Furthermore, the creative abductive attitude met in the students, cannot be
considered only an inclination of human nature, but it also probably depends on the
scholastic and extra-scholastic experience of the student, and certain kinds of didactical
contract (like those discussed in this work) may positively influence such creative

processes.
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7.1  Educational implications

The Abductive System may be considered from two perspectives. From the
cognitive point of view, it gives the researcher the tools (i.e.; the elements of the
Abductive System) to recognize students’ creative attitudes during their problem -
solving processes. From a didactical point of view, it points to those teaching styles
which enhance an “abductive atmosphere” (e.g.; the lecture analyzed in this research),
when the teacher does not just deliver the knowledge but he or she creates those
conditions where the immediate creation of a fact entails “the necessity” to build or to
look for a justifying hypothesis, generating in this way creative mechanisms.

Secondly, the analysis employing the tools of the Abductive System has brought
to light the importance of the proposal of “open problems” where the continuity of the
cognitive tools and the involvement of transformational and perceptual reasoning are
guaranteed, since they seem to improve creative processes of an abductive nature.
Therefore, this framework could help teachers to be more conscious of what has to be 1)
recognized, 2) respected, and 3) improved upon, with respect to a didactic culture of
“certainty,” which follows preestablished schemes.

In terms of Proof Schemes the Abductive System could open a new chapter of the
schemes, reconsidering them from the conjecturing point of view, not only from the
evidencing one. For what concerns further research issues, it would be interesting to
consider two different random groups of students. One group would attend a Calculus
course based on a didactical contract similar to that analyzed in this research, and the
other group would attend a more traditional Calculus course, where the frontal lecture
with a deductive approach is preferred. With the same procedure followed in this
research, the two groups would be given some problems to be solved, and their works
would be analyzed through the tools of the Abductive System. The focus of the new
investigation would be represented by the study of the differences in the solving
processes between the two groups, and how different kinds of didactical contract may

influence creative processes in the construction of conjectures and proofs.
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Appendix A: Questionnaire

1 guestion: CHECK THE FORMS OF REASONING YOU KNOW

1% year of college

(out of 89)
Induction 9
Deduction 9
Induction, and Deduction 45
Induction, Deduction, and for Contradiction 10
Induction, and for Contradiction 1
Induction, Deduction, and Intuition 3
Induction, and Intuition 1
Induction, Deduction, and Philosophy 1
Induction, Deduction, for Contradiction, and Logic 1
Induction, Deduction, the Tossing of a coin 1
Deduction , and Intuition 1
At least Induction, and deduction 61
Only deduction 9
Only induction 9
For contradiction 12
For intuition 5
COMMENTS

The majority of students (52%) knows both Induction and Deduction; followed by
students who know not only Induction and Deduction but also proof by contradiction.
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2" question:  AS STUDENT, DO YOU THINK THE STUDY OF PROOFS TO BE NECESSARY?

1% year of
college
(out of 89)
TYPE OF JUSTIFICATION STUDENTS’ TRANSCRIPTS NUMB OF
STUDENTS
They help to understand theorems and 17
their meaning
They make the content clearer and easier 4
to remember
They explain certain assumptions, and why 3
certain facts happen
Yes They validate the problem, they convince of 7
its validity
They help to create mental schemes and 4
they make you to use them correctly
Because you learn a way to think absolutely 1
connected with the study of mathematics
As a tool to learn to think 1
As a tool useful to solve problems 6
As a chain-mechanism: "with one you can 1
learn all of them”
As a tool to deepen 1
They help to understand better the 12
reasoning used to arrive to the given
conclusion
As a generic example to understand the
particular rule (for example Rolle) 1
58
Because they are difficult and they are 2
just useful for themselves: "They are
difficult to understand and there is no
interest to understand how a certain thesis
No has been proven”. "It is useful just to
understand a formula and that's all”
They are not necessary to solve the 1
problems
Useful only for mathematicians 1
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Because it is a mnemonic study 1
5
When they are useful to understand better 11
the theorems
When the reasoning process is hot 3
immediate
When it represents a tool for reasoning 1
When it is not just useful for itself:
"When the concepts are fundamental to
Sometimes understand Calculus/Analysis".
"When the statement to be proved is not 5
just useful for itself but it would result as
a ool for future results”
"When the theorem is important”
"When they are essential for the learning
and the good result of a test”
As a tool of exploration 1
When they do not make the tings more
complicate. When They are too complicated 4
they don't have any didactical value
Only when they really help to understand an 1
issue
26
COMMENTS

58/89 answered Yes, 5/89 answered No, 26/89 answered Sometimes.

Most of the students (65%) think of proofs as a tool to better understand theorems, their

meaning, and the reasoning involved into the process of proving. The remaining part is

mainly concerned with the idea that proofs are necessary because they validate the

problem and convince of its validity, or as a tool useful to solve problems, to create

mental schemes to be used in problem-solving, furthermore they explain the why of a

fact, and finally they make a context clearer, and easier to be remembered.

Most of the students who answered “Sometimes” (29%) states that proof is

necessary when it helps to better understand a theorem.

Very few (6%) are convinced that proofs are not necessary at all.
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Conclusion: the main idea about the necessity of a proof is based on its usefulness to
help oneself to understand better a theorem; therefore proof is seen as an explanatory

tool.

3" question WHICH KIND OF RELATIONSHIP LIES BETWEEN HYPOTHESIS AND THESIS
IN THE CONSTRUCTION OF THE STATEMENT OF A THEOREM?

1st year of
College

(out of 89)

TYPE OF JUSTIFICATION STUDENTS’ TRANSCRIPTS N. OF
STUDENTS

It depends

Many times you start from the thesis
and then you build the hypothesis useful 1
to prove the validity of the thesis itself

Sometimes it happens that you have an
intuition on a thesis and subsequently 1
you build the hypotheses that make the
thesis true; sometimes you start from a
set of hypotheses fo arrive at some
results.

Sometimes you know the thesis and the
hypotheses serve to prove the validity 1
of the thesis; other times from the
hypotheses you infer the thesis.

Usually you know first the hypotheses
The thesis is considered a | to reach the thesis, but you may have 1
starting point from which | also a thesis to be reached and you need

you build the hypotheses | to find the hypotheses to make the
to prove the validity of the |starting point valid.

thesis itself. Usually the hypothesis comes before
the thesis, but sometimes it may be 1
necessary to look for which hypotheses
may satisfy a particular thesis

Sometimes the thesis is already known
and the proof is used only to explain the
why of the validity of the thesis. 1
Other times starting from the
hypothesis you reach the proof of the
theorem that was previously unknown.
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On the situations. Usually you start
from an observation; then you see (for
example) that certain numbers behave
with certain properties and you can
build the hypotheses that determine
such properties; but it also can happen
the opposite. I think it is more common,
in the science, to start from the thesis
(for example; in physics you first
observe the phenomenon); but nothing
prevents the opposite process to
happen.

Sometimes you know the thesis and
hypothesis is necessary fo prove that
the thesis is valid; sometimes from the
hypothesis you deduce the thesis
arriving at the concept

The awareness of the
difference between the
construction of a proof and
its “transcription’

I think that there is a difference
between the moment you state a
theorem (usually the hypotheses are
listed in an orderly way, then the thesis
go after) and the construction of the
statement of a theorem. This one
follows a very laborious and “untidy"”
process; o this extent, sometimes you
may have in your mind a result and you
need to look for hypotheses from which
you obtain the result; other fimes you
start from certain hypotheses and you
try to understand what they lead to.
Besides, in the famous "if and only if"
hypotheses and theses exchange the
role.

The certainty of the
observed fact and the
difficulty of the
construction of the
hypotheses needed to
explain it

Many times you know where you want to
arrive, but you don't know where to
start.
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Depending on the cultural
background and the kind
of reasoning

There doesn't exist a precise law, it
depends on the kind of research one
does and on the cultural background one
owns.

On the kind of reasoning. If it is
inductive the hypothesis comes first,
otherwise the thesis is the one coming
first.

On the method that has been used. If
deductive the hypothesis comes before
the thesis, if inductive the thesis comes
before the hypothesis

It depends on the system of reasoning.
Example: for contradiction I suppose a
thesis to be true in order to verify the
validity of the hypothesis

The generality is given by
‘from hypothesis to thesis’,
the particular is “from
thesis to hypothesis’

If you are looking for something in
particular, I think the thesis comes
always before the hypothesis. In the
case you want to build, to expand or to
deepen a theorem, I think the
hypothesis comes first.

The idea that the thesis has
a more empirical
connotation in the sense
that it comes from an
observed fact. Instead
hypothesis has a more
cognitive connotation,
because it is the
construction of an act
reasoning

It depends. A theorem often rises from
an empirical experience, and therefore
the thesis rises before the hypothesis.
But it is also true that other times a
theorem is the result of a reasoning
that starts from very precise
hypotheses to reach the theses which
can be surprising and unexpected.

Generally the thesis comes before the
hypothesis (you try to proof something
that will be useful for other purposes),
but it can happen that from particular
hypotheses a new correct thesis,
casually, may rise.
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The distinction between
the two cases: when from a
set of hypotheses you infer
a thesis, and when given a
fact (thesis) you look for
some plausible hypotheses
to infer the thesis from.

It depends if you infer the thesis from
a group of hypothesis (a trivial and not
very useful case) or if you need a thesis,
or if you want to verify it, and you look
for the hypotheses which you infer the
thesis from (much more common case).

It depends on where you want to start
from. If you suppose the existence of a
theorem or if you suppose some
conditions in order to arrive to a
theorem that you ignore the existence
of.

It depends if you have to prove the
theorem, or if you have to find it.

There is not a particular
relationship between
hypothesis and thesis

You can nor start a-priori conceptually
from a hypothesis and immediately to
analyze the thesis; neither can you lead
the reasoning starting from the thesis
to reach the hypothesis.

In my opinion there isn't a fixed
relationship between thesis and
hypothesis, and this is proved above all
by those theorems in which you can
exchange hypothesis and thesis

Sometimes you start from the
hypotheses to reach the thesis and
sometimes you start from the thesis to
reach the hypotheses

It depends because for example for
what concerns physics, the phenomena
to be studied usually are the thesis, it
depends on the scientist to prove how it
may happen formulating some
hypotheses. On the other hand,
sometimes you think if specific
hypotheses lead or not to a thesis, and
from there, through mathematical steps
you arrive at the thesis

32
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The thesis always comes
before the hypothesis

The hypothesis as a tool to
justify, explain the
hypothesis

In the thesis you must hypothesize
conditions that make the thesis be
verified.

The thesis is the starting point, the
"question” that rises after having
observed a phenomenon. Instead the
hypotheses serve to prove if the
thesis is valid or not

Some theorems to be proved need the
thesis be denied, therefore the thesis
is used as a hypothesis to verify the
truthfulness

To proof a thesis you make a
hypothesis and then you look if it is
true

The thesis as a fact, the
problem to be solved. There
is a sequence between thesis
and hypothesis. The presence
of a thesis is the necessary
condition to have a
hypothesis.

Because the thesis is the “problem”
you have to solve, the hypotheses are
made (imposed) to arrive at the
solution

First you "find" a property or a result
that if it were valid it would be
favorable. Then, you try to proof it
under opportune hypotheses.
Subsequently you may try to reduce
the number of the hypotheses and
check if the theorem is still true.

First T decide what has to be proved

Anybody, before of choosing to use
particular tools and conditions
(hypotheses) to prove his/her own
conviction, has to have first a
conviction that his/her own genius
judges to be correct

The hypotheses of a proof are built
afterwards, because they put some
"limits” (they are “characteristics”)
for the statement of the theorem
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Because the statement represents 1
what you wanted to prove, therefore
the thesis
Because the aim is always to prove the
validity of a thesis, checking among 1
the hypotheses and the data I have
the ones which allow me to do so
12
The hypothesis always
comes before the thesis
From known to unknown. The hypothesis is already known, the 1
Therefore you start from thesis has to be proved starting from
something you a_Iready k_now the hypothesis
to prove something thatis gy poun things you prove unknown
not still certain. The . 1
hypothesis is something things
already known and from
there you start to prove the
thesis.
But what is the thesis? Is it
already known but it is not
certain and through the proof
and the known hypothesis
you arrive to the validity of
the thesis? Or do you find
out the thesis through the
proof?
The question is what do we
prove if we don’t know what
to prove?
In the hypothesis there are the data 2
The hypothesis is the “place” | we know about
where there are the data you
know. Namely, the Because from initial conditions it is .

hypothesis is the “owner” of
the data you need for the
proof.

possible to reach a final thesis, on the
contrary not always is it possible to
reach some initial conditions starting
from the final thesis
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The necessity of the
hypothesis to prove the
thesis.

Probably rose from the way
proofs are presented at
school.

You always need first a hypothesis

You need to start from the hypothesis
to prove the thesis

Without hypotheses you can't arrive
at any thesis

On the basis of my hypothesis I state
my thesis

The thesis needs an a-priori
hypothesis

If there weren't a hypothesis, why
would you state a thesis?

Without the hypothesis you can't
reach the thesis

Without an hypothesis you can't have
a thesis

The hypothesis gives the basis in
order to prove the thesis and for its
proof, therefore it is essential

Because to prove a thesis you use a
hypothesis

To prove a thesis you need a
hypothesis

This is always a case of
hypothesis as an essential
tool to make a proof. But
there is something more
compared with the previous
answers: it is explained the
reason why the hypothesis is
important. It represents the
basis to reason about in order
to check the validity or
falseness of the thesis.

Because the hypothesis represents
the data, the bricks on which it is
possible to reason in order to find out
the truth or the falseness of a thesis




189

Here we can see the
description of the structure
of a proof as it is shown at
school, and not of its
creation. According to these
answers a proof is a
sequence of logical
implications which go from
hypotheses to thesis, but
nothing is said about its
creation, just only its
structure as a finished
product.

From the hypothesis or hypotheses
applying mental-logical steps or
theorems already known and proved,
or axioms, you arrive always at the
thesis no matter complicated the
theorem is.

Because it is a logical implication
(inference)

The thesis is the consequence of a
proof that is based on some initial
data

Again there is the idea of the
structure of a proof as a
sequence of steps, that start
from hypotheses to end into
a thesis. Such a rigid
structure is so predominant
the student doesn’t realize
that himself assumes the
presence of a thesis before
the statement of the
hypotheses (“the supposed
thesis™). Nevertheless, a
presence of a thesis before
the hypotheses seems not to
be part of the process of
proving.

It also looks like hypotheses
live of their own life; the
thesis rises as a consequence

Because first you state some
hypotheses and then you try to reach
the supposed thesis

The thesis is the consequence of a
proof that is based on some initial
data

You make a hypothesis and then you
verify it with experiments to see if
they are true. Only then you make the
thesis (It is Galileo's model)

Because the thesis arises from the
work I do on what the hypothesis says

Because you always make a hypothesis
first and then after several proofs
you may give a thesis

Given some statements and particular
conditions, particular situations follow
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of the reasoning made about
the hypotheses. But why
such hypotheses are made or
taken on consideration we
don’t know...

Therefore, hypothesis is a
necessary condition for the
existence of a thesis, due to
the fact that this one rises as
a consequence of the
reasoning made on the
hypothesis, but why do such
hypotheses come out, pushed
by what?

First I state the hypothesis and from
that I reason to state my thesis

Hypothesis as a start point

Because the hypothesis is a base to
start from

It seems that the logical
sequence is “first doubt and
then certainty”. To this
extent the hypothesis
represents the doubt and the
thesis is the certainty,
therefore the logical
sequence of the two.

The hypothesis represents a doubt
and the thesis is its confirmation
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In this case the term
“supposition” and
“hypothesis” have the same
meaning. It seems that the
relationship between
hypothesis and thesis is the
following: the thesis is just a
supposition (the hypothesis)
we verify the validity of.
Namely, | make a
supposition (the hypothesis),
then | verify if it is true; if it
is like that, such hypothesis
becomes the thesis.

For example: we suppose
that the set of the natural
number is lower bounded
(this is the hypothesis, the
supposition), then we prove
that it is true, therefore the
hypothesis being true,
becomes the thesis.
Hypothesis and thesis are the
same statement with two
different value of truth: till
when the statement is not
proved to be true, itis a
hypothesis, after its proof of
true value it becomes a
thesis.

You make some hypotheses and then
you verify with experiments if they
are validated, only then you state the
thesis

Because I suppose a fact and then I
prove that it is true

In this specific case there is a
clear example of hypothesis
meant as a supposition that
has to be proved in order to
become the thesis.

What | observed in these last
answers is that students think
of hypothesis just as a
conjecture to be proved; on
the contrary hypotheses
meant as a set of rules,
axioms etc...already true, are
not considered as hypotheses

Ihiit i1int A ant AF AtatAarannta

Because you suppose a hypothesis to
be true, and through a set of
statements, you reach a thesis

Because first I suppose some data and
I try to verify if my hypotheses are
valid or not, if they are not valid I
build new hypotheses. Sometimes,
anyway, it can happen to discover
some formulas or rules, then you try
to reach their hypotheses

First T have to develop a hypothesis
considering all the elements that have
been given
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but just a set of statements. | First of all you need to have in your
mind what you want to prove; in case, 1
after the proof you make adequate
changes

The thesis as an input to find | Because the thesis has to be an input
new things. to look for new properties, new 1
relationships that are based on given
elements (the hypotheses)

The hypothesis comes first | Usually the hypothesis simplifies the
just because its role is to statement and the proof of the
simplify the proof. statement, and I believe it is more 3
logical to start from easy and more
understandable things to arrive to
analyze more complicate ones

45

COMMENTS
32/89 answered It depends, 12/89 answered The thesis comes always before the

hypothesis, 45/89 answered The hypothesis comes always before the thesis.

Concerning the first choice (it depends) we could summarize the main justifications
as follow: very often the thesis is considered as a starting point from which it is possible
to build the hypotheses that may prove the validity of the thesis itself; not only but the
thesis seems to own an empirical connotation in contraposition with a more cognitive
connotation of the hypothesis; namely, the thesis comes from an observed fact, while
hypothesis is the construction of a reasoning.

Very interesting is the answer given by a student who reveal the awareness of the
difference between the construction of a proof and its “formalization”. Moreover, part of
the students relate the characteristics of a proof with the cultural background.

Among the 32 students (36%) who answer “It depends”, almost half of them (15/32)
seems to base their response “the thesis comes before the hypothesis” on a common idea:
the experimental characteristic of the reality; that means: in the real world what is
observed is a fact (the thesis) that may be unusual or at least not directly explainable,

therefore we look for or we try to build some hypothesis which may justify, or validate
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the observation that has been made. Such students seem to describe the process Peirce

talks about regarding abduction. Below the most significant answers given by the

students to this regard are listed.

v

Many times you start from the thesis and then you build the hypothesis useful to
prove the validity of the thesis itself

| think that there is a difference between the moment you state a theorem (usually
the hypotheses are listed in an orderly way, then the thesis go after) and the
construction of the statement of a theorem. This one follows a very laborious and
“untidy” process; to this extent, sometimes you may have in your mind a result
and you need to look for hypotheses from which you obtain the result; other times
you start from certain hypotheses and you try to understand what they lead to.
Besides, in the famous ““if and only if”” hypotheses and theses exchange the role.
Many times you know where you want to arrive, but you don’t know where to start
from.

Sometimes it happens that you have an intuition on a thesis and subsequently you
build the hypotheses that make the thesis true.

Sometimes the thesis is already known and the proof is used only to explain the
why of the validity of the thesis.

It depends, because often a theorem rises from empirical experience, and
therefore the thesis comes before the hypothesis.

It depends if you infer the thesis from a group of hypothesis (a trivial and not very
useful case) or if you need a thesis, or if you want to verify it, and you look for the

hypotheses which you infer the thesis from (much more common case).

On the other hand, the same students who answered “It depends” and gave the

explanations listed above, stated that other times “hypothesis comes before thesis”; my

feeling on this second kind of response is that has been leaded by the scholarization of

their vision of proof. Namely, when students enter into school they usually start to

approach ready made proofs, well stated, organized as a sequence of logical steps linked
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one to the other one by deductive processes. All the intuitive, conjecturing phase has been
already deleted, and forgotten. Below are reproduced some of the most significant
excerpts :

v" [...] But it is also true that other times a theorem is the result of a reasoning that
starts from very precise hypotheses to reach the theses which can be surprising
and unexpected.

v [...] Other times starting from the hypothesis you reach the proof of the theorem
that was previously unknown.

v" [...] Sometimes from the hypothesis you deduce the thesis arriving at the concept.

Furthermore, | got the impression that students when try to explain why thesis comes
before hypothesis they seem really embedded in the reasons they give, otherwise it seems
to me that when they try to justify why sometimes the hypothesis comes before thesis
they just try to reproduce a frame they have seen at school

The second choice is given by “the thesis comes always before the hypothesis”.
Again, the general idea supporting this answer is that the thesis is the fact, the problem to
be solved, the starting point, and the hypothesis is the tool to explain, to validate the
observed fact. A new idea seems to come out from students’ justifications, it is the
sequence between the hypothesis and the thesis. Namely, the existence of a hypothesis is
subordinate to the presence of a thesis as some students wrote:

v First | decide what has to be proved

v Anybody, before of choosing to use particular tools and conditions (hypotheses)

to prove his/her own conviction, has to have first a conviction that his/her own

genius judges to be correct

v The hypotheses of a proof are built afterwards, because they put some “limits”™

(they are ““characteristics™) for the statement of the theorem.

The last choice was represented by: “the hypothesis comes always before the thesis”.
In this case hypothesis, for example, is considered like what you already know and thesis

is the unknown, therefore we start from what we know to prove the thesis.
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Another interpretation is given by “the hypothesis is the place where the data
necessary for the proof lay”; other times the relationship between hypothesis and thesis
seems to be the same of the logical sequence “first doubt and then certainty”. To this
extent the hypothesis represents the doubt and the thesis is the certainty.

The majority of the students seem to be influenced by the structure (and not by the
creation) of a proof as it is usually presented at school; therefore, proof is just a sequence
of steps, that start from hypotheses to end into a thesis. Such a rigid structure is so
predominant the student doesn’t realize that he assumes the presence of a thesis before
the statement of the hypotheses (“the supposed thesis”). Nevertheless, a presence of a
thesis before the hypotheses seems not to be part of the process of proving.

Furthermore, hypotheses seem to live of their own life; the thesis rises as a
consequence of the reasoning made about the hypotheses. But why such hypotheses are
made or taken on consideration we don’t know...

The hypothesis is a necessary tool to make a proof, specially because it is the base to
reason about in order to check the validity or falseness of the thesis.

The last interpretation of hypothesis | am going to take on consideration is the most
interesting. Several students identify hypothesis only with supposition, conjecture, and
look at the thesis as a hypothesis whose true value has been proved; namely, a thesis is a
previous hypothesis (conjecture) that has been proved to be true. Therefore, hypothesis
and thesis are the same statement with two different value of truth: till when the
statement is not proved to be true, it is a hypothesis, after its proof of true value it
becomes a thesis. On the contrary hypotheses meant as a set of rules, axioms
etc...already true, are not considered as hypotheses but just a set of statements.

Below the most significant excerpts has been taken on consideration to underline the

explanations given by the students.

v From known things you prove unknown things
v Without hypotheses you can’t arrive at any thesis
v" The hypothesis gives the basis in order to prove the thesis and for its proof,

therefore it is essential
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v" From the hypothesis or hypotheses applying mental-logical steps or theorems
already known and proved, or axioms, you arrive always at the thesis no matter
complicated the theorem is.

v Because first you state some hypotheses and then you try to reach the supposed
thesis

v’ Because you always make a hypothesis first and then after several proofs you may
give a thesis

v' First | state the hypothesis and from that | reason to state my thesis

<

Because | suppose a fact and then | prove that it is true
v’ Because you suppose a hypothesis to be true, and through a set of statements, you

reach a thesis

4" question FOR EACH THEOREM DO YOU THINK THAT THERE EXISTS ONLY ONE

CORRECT PROOF?
First year of
college
(out of 89)
TYPE OF JUSTIFICATION STUDENTS’ TRANSCRIPTS N. OF
STUDENTS
Yes. Why?
Because I imagine it 1
Not to create confusion in a proof 1
2
No. Why?
It depends on the theorems, some may 9
have more than one
T know some theorems that have two 3
It depends on the theorems.
Probably such an answer proofs
depends on student’s It depends on the theorems you are 1
scholastic experience analyzing
I know theorems with more than one 1
proof, for example the Pythagorean
theorem.
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Many times during high school T saw
theorems proved in different ways but
all correct

In my opinion there exist more than
one correct proof. You may think of
“proof by contradiction” that are
another way than a "linear” proof

Different kinds of reasoning
and different tools (e.g.,
axioms, postulates and so on)
lead to different correct proofs.
And also different paths you
may choose to reach the same
target.

Furthermore, we can find a
sort of “economy” of the
thought; we generally choose
Different kinds of reasoning
and different tools (e.g.,
axioms, postulates and so on)
lead to different correct proofs.
And also different paths you
may choose to reach the same
target.

There are different ways of reasoning,
and also different sets of axioms, for
example the one of Euclid for algebra
and geomeftry

There exist different ways to reach
the same result

20

It depends on the ways you want to use
to reach the proof; many times there
are several ways and you always try fo
choose the most convenient
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Furthermore, we can find a
sort of “economy” of the
thought; we generally choose
the easiest, or most convenient
procedure.

Finally, the dependence of the
kind of procedure on the
knowledge and the cultural
background of the person who
performs the proof

The different levels of
knowledge lead to different
levels of proof for the same
theorem.

Proof is strictly dependent on the kind
of reasohing you made

Because many times it is possible to
take different ways to prove
something. All depends on the
knowledge a person has and also on the
ways he/she has been taught to reason.

There may be more than one correct
proof; some may be very artificial for
it is difficult to find them

I think there are theorems which have
more than one correct proof, because
these proofs can be built using
different mathematical tools,
sometimes more sophisticated,
sometimes less, but also because they
are situated in different mathematical
confexts. (You may find a theorem
both in analysis and in geometry for
example). This is the reason why the
same theorem may have a two lines
proof and another may have a two
pages proof.

It depends on your knowledge
background, a competent person may
proof a theorem in a complicate way,
for example with more advanced
knowledge, but sometimes you may
prove a theorem with easier tools, and
then, in my opinion, a person's
creativity has a big influence on the
way you make a proof
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I think there may be more than one
proof for a theorem, the difference is
in the fact that some may result easier
respect with some others

Because many times it is possible o
take different ways to prove
something. All depends on the
knowledge a person has and also on the
ways he/she has been taught to reason.

There may be more than one correct
proof; some may be very artificial for
it is difficult to find them

I think there are theorems which have
more than one correct proof, because
these proofs can be built using
different mathematical tools,
sometimes more sophisticated,
sometimes less, but also because they
are situated in different mathematical
contexts. (You may find a theorem
both in analysis and in geometry for
example). This is the reason why the
same theorem may have a fwo lines
proof and another may have a two
pages proof.
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It depends on your knowledge
background, a competent person may
proof a theorem in a complicate way,
for example with more advanced
knowledge, but sometimes you may
prove a theorem with easier tools, and
then, in my opinion, a person's
creativity has a big influence on the
way you make a proof

I think there may be more than one
proof for a theorem, the difference is
in the fact that some may result easier
respect with some others

You may use several methods to make a
proof; you may start from different
points of views and reach the same
thing. This depends on the knowledge
and on the tools you have, and
furthermore it depends also on what
view point you want to prove (e.g.,
mathematical, physics)

Because it is possible to reach the
same conclusion making dif ferent
reasoning

Different people may find different
ways to reach the proof of a
hypothesis

Because in the Sciences there are
different kinds of reasoning, namely,
different schools of thought. For
example, the issue about the “zero”
regarding its position in the real
numbers or in the natural humbers
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In my opinion it is possible to reach a
proof following different ways,
sometimes there doesn't exist a
correct proof but there may exist
several correct proofs

You may try different ways using your
own knowledge

Through the reasoning you may find
different ways to reach the proof of a
theorem.

A proof may follow different paths
depending on the kind of study and
level of knowledge, but also on the
inspiration of the person who is
performing the proof. For example
many mathematicians have tried to find
different and unusual proofs for the
Pythagoras's theorem.

Because there always exist several
procedures, and formulas to be applied
to reach the statement. No doubts, we
can distinguish between easier proofs
and more tedious one.

The theorem is a unique thing but the
ways you may explain it are different.

Sometimes you may prove a theorem
both analytically and graphically

There are several mathematical tools
that allow to proof the same thing in
several ways

There may be several correct proofs
for each theorem because: 1) you may
use different tools (theorems,
postulates, and so on) 2) each person
proceeds in a proof as he or she thinks
the better way is.
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In my opinion some theorems (I am not
sure all of them) may be proved in
different ways. For example I have
tried (I hope successfully) to prove
that among all the triangle with the
same perimeter, the one with maximum
area is the equilateral triangle, without
using derivatives, limits (therefore,
the study of a function), but with a
"logic" reasoning on Erone's theorem

The ways to prove something may be
many, the fact is that usually you use
the more intuitive and immediate one

Some theorems may be proved with
different methods

Even through different "paths” logic-
deductive, it is possible to prove the
validity of a theorem, the important
thing is those paths to be correct and
real

Probably the student is aware
there exist more than one
correct proof of the same
theorem; but at school he/she
usually sees only one of them.
The sentence “only one is
taught” underlines the idea
that generally students’
experience with the approach
to proofs is something passive,
it is something that is taught as
it is, just as final ready-made
product, and not something
that is built with students’
collaboration.

I think there exist several ways to
proof a theorem; but usually only one is
taught
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Several ways

T think to say “only one" is very

restrictive. Euclidean Mathematics is 1
based on five theorems...therefore a
concept may be proved following
several ways
It depends on the individual | Because mathematics is a very wide
creativity and initiative. subject matter and depending on the
person who is proving the theorem
there exist different ways to reach 1
the thesis starting from the same
hypothesis, it depends also on the
person’s creativity and initiative.
Only two things are constant: | T think that the only constant of a
the logic and the truthfulness | proof is the logic and the truthfulness
of the_ statements. What of the statements. Therefore, I think
remains dezpends on the there doesn't exist a fixed scheme and 1
!n_dl_VIQUaI s creativity and . | that creativity and initiative are the
initiative, the important fact is X y )
that such characteristics be basis of a brilliant intellect on
supported by a basic cultural condition that it is supported by a
background. certain “cultural background” that
allows to reach correct conclusions.
The only important thing is The only important thing is that the
that has to be logically correct. | proof must be logically correct 1
More than one correct proof | There may be more than one correct
proof 3
From different hypotheses for | You may pose different hypotheses to
the same theorem, you will reach the same thesis 1

obtain different correct proofs

89
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COMMENTS
Almost the totality of the students agrees with the fact that there may exist more

than one correct proof for the same theorem.

Different are the justifications given by the students. Some of them seem to be influenced
by their scholastic experience, in the sense that they legitimate the existence of more than
one correct proof, because they saw it at school (a sort of authoritarian scheme).

Others start from the idea that existing different ways of reasoning and different
tools (axioms, postulates, and so on), there must exist different ways to make a proof for
the same statement
Furthermore, a proving process depends on our own knowledge, for this reason such a
procedure may take different aspects, not only but also, different levels of knowledge
lead to different levels of proof. Interesting is the fact that students seem to be aware of
the existence of several correct proofs for the same theorem, but they meet just one of
them during their scholastic career.

The sentence “only one is taught” underlines the passive character of the students’
learning process; usually proofs are presented to students as a ready-made product,
instead to be involved actively in the construction of it.

Some of the most indicative excerpts are listed below:

v' Many times during high school | saw theorems proved in different ways but all
correct

v" Proof is strictly dependent on the kind of reasoning you made.

v Because many times it is possible to take different ways to prove something. All
depends on the knowledge a person has and also on the ways he/she has been
taught to reason.

v" | think there are theorems which have more than one correct proof, because these
proofs can be built using different mathematical tools, sometimes more
sophisticated, sometimes less, but also because they are situated in different

mathematical contexts. (You may find a theorem both in analysis and in geometry
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for example). This is the reason why the same theorem may have a two lines proof
and another may have a two pages proof.

v It depends on your knowledge background, a competent person may proof a
theorem in a complicate way, for example with more advanced knowledge, but
sometimes you may prove a theorem with easier tools [...]

v You may use several methods to make a proof; you may start from different points
of views and reach the same thing. This depends on the knowledge and on the
tools you have, and furthermore it depends also on what view point you want to
prove (e.g., mathematical, physics)

v In my opinion it is possible to reach a proof following different ways, sometimes
there doesn’t exist a correct proof but there may exist several correct proofs

v A proof may follow different paths depending on the kind of study and level of
knowledge [...]

v" | think there exist several ways to proof a theorem; but usually only one is taught.

50 question THE CONSTRUCTION OF A PROOF HAS TO FOLLOW A FIXED PATTERN.
CREATIVITY CANNOT FIND ROOM IN THE CONSTRUCTION OF PROOFS.

1*" year of
college
(out of 89)

TYPE OF JUSTIFICATION STUDENTS’ TRANSCRIPTS N. OF
STUDENTS

False. Why?
The only constant factor is | I think the only constant of a proof is its
the logic and the logic and the truthfulness of the 1

truthfulness of the
statement.
All remaining depends on

statements. Therefore I think there
cannot exist a fixed scheme and that
creativity and personal creaﬂvaY cmc.l initiative are at T'h.e basis
initiative that are a smart of a brilliant intellect a on condition that
mind’s characteristics. The |they are supported by a certain "cultural
important thing is that background” that allows to reach correct
creativity be supported by a |conclusions
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creativity be supported by a
cultural background.
Therefore, creativity and
personal initiative are
acceptable only if based on
legitimate knowledge.

Creativity meant as freedom
for the choice of the points
of view to be adopted.
Again, the limitations are
not on the structure of the
proof but on the concepts
used for the proof; such
concepts have to respect the
rigor and the validity of
mathematics.

Creativity as a very difficult
but at the same time
amazing thing, if it is
correct.

Creativity as a tool to
simplify steps otherwise
complicated and boring.
Again the common idea
underlying all these answers
is the respect for the rigor
of mathematics.

Finally, the common
denominator in this first
group of answers is that
creativity and personal
initiative are important, are
accepted, and useful, but at
the base nothing would be
acceptable if there weren’t
the rigor that characterizes
mathematics

Because, if you mean creativity in the
sense of freedom to start from where
you want, I think it is possible to do it,
what it is important is to be able to prove
what you want. Probably, the limitations
are not much in the structure of the
proof but in the concepts you may use. A
rigorous proof uses abstract concepts
because stillness, invariability in time of
the proof must be guaranteed

Creativity in mathematics is the most
difficult thing, but also the most
beautiful (if correct). It may simplify
steps that are only mechanics therefore
boring. What is fundamental, anyway, is
the fact that mathematical rules have to
be respected.

A proof doesn't have to follow a fixed
scheme, but the tools you use must have
sense and must lead anyway to the right
proof of a theorem

Most of the proofs are based on past
experience, but also fantasy and
creativity may give a useful help, always
following mathematical rules. Indeed, you
may find very few identical proofs
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There are more than one
way to make a correct
proof; therefore, among
these different approaches
creativity may be a
possibility.

It is possible to reach the
same target in several ways;
this depends on personal
creativity and initiative.

The two previous
interpretations are different:
the former states that there
are several ways of
approach to a proof,
therefore one of these
approaches is creativity and
personal initiative. The
latter says that creativity and
personal initiative are the
cause of the heterogeneity
of the approaches.

Each of us has different
ways of thinking, therefore
creativity and personal
initiative must play their
role.

A proof may follow different paths
according with the kind of studies and
the level of cultural background, but also
following the personal inclination of whom
that is making the proof.

There may be more than one proof for
each theorem, as I already said

There isn't only one way to face a proof

You can try several paths using your own
knowledge

Mathematics is a very wide subject
matter, and depending on the person who
wants to prove the theorem there exist
several ways to reach the thesis starting
from the same hypothesis, it also
depends on person's creativity and
initiative

As I said for the previous question, a
proof of a theorem may be not unique and
anyway also inside of the same proof is
possible to make variations, leaving room
for creativity and personal initiative. We
have to say, that it is true that not many
students have this kind of skill

There are many ways to prove a theorem.
Therefore personal initiative and
creativity are at the basis of a proof

Sometimes, there exist many
mathematical tools to prove something, so
you may chose the one you prefer

Because each of us may find more logic
one step instead of another one

Each of us look at the problem from a
personal point of view and he/she may
solve it in the way he/she believes to be
more convenient

The proof depends on whom who is making
it
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Each of us has a different form of
reasoning

Intuitions seem to be the
ones that lead to progress of
the science and the
enhancement of the
knowledge.

The reasoning used for a
proof must be linear, but
linearity doesn’t exclude
creativity and personal
initiative. Furthermore,
intuitions and creativity are
fundamental elements for
the progress of the science

Probably students think of
what they have studied at
school, great philosophers,
or mathematicians etc.

It also depends on the personal
inclination, with it I mean the intuitions
too, and the ones of great thinkers have
enhanced the overcoming of some
limitations f Analysis.

The construction of a proof must without
doubt follow a linear reasoning, but this
doesn't exclude creativity and personal
initiative. It there were not personal
initiative I think no science could make
progresses.

Even the history feaches us: “a spot of
genius” may lead to a proof that is totally
out of traditional schemes adopted to
build a proof.

Creativity is the characteristic that
stimulates human beings to the
continuous research, that leads to
knowledge

Fantasy arrives before the
reality

The fantasy arrives before the reality

Fundamental tools

Intuition may be a tool
useful for the construction
of a theorem.

Sometimes intuition and
creativity may be the only
tools to find a proof

Many times without infuition, creativity,
and personal initiative you cannot find an
efficient proof.

You might need the intuition to build a
theorem

Sometimes you can find a proof only
thanks to intuition and creativity, in this
case the proof looks more amusing
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Several proofs are fanciful
we could almost say,
absurd.

Probably, students think of
proof they have seen at
school, such as Lagrange
theorem, or Taylor theorem,
the proof of the first
derivative of the product,
where some artifices are
used. They often cannot see
the relationship between the
artifice and what is being
proved; and they obviously
ask: “Where is this come
from?”

Therefore students cultivate
such an idea that to make
proof you need fantasy, for
this reason creativity is one
of its components.

Many proofs are very fanciful, we can say
absurd.

For some proofs you need a lot of fantasy

Creativity, personal
initiative, and intuition as
fundamental tools for the
construction of a proof.
They represent tools
necessary to reason, to
inquiry, to look at the
problems from different
points of view. Furthermore,

I think that creativity and personal
initiative are the most important tools in
the construction of a proof, because they
help to think of and to wonder about
problems of different kind (even though
later on some of them may result not
useful) and creativity and personal
initiative develop a capacity’ of personal
critical analysis
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points of view. Furthermore,
creativity and personal
initiative enhance the sense
of critique

Without creativity, we
would remain stuck in
prescribed rules; such rules
may represent an obstacle to
look beyond.

They are also considered
tools employed to shed light
on properties still unknown.

Creativity necessary to build
new proofs, easier than the
ones already existing.

Creativity as tool employed
to think at 360 degrees; it is
an instrument to explore
new ideas, to find a more
efficient proof.

Students think that books
for example often are not
the easiest ones, or the most
efficient; therefore creativity
may enhance such kind of
things.

As tool to simplify more
complicated processes.

Creativity is the base for the
greatest discoveries

To follow fixed schemes is
not enough.

The “eyes of the mind” may
not be able to see a solution
that is right in front of them.

Initiative and personality are part
integrating in the construction of a logic
process that would remain stuck in
prescribed rules if it weren't adapted to
an “esprit de finesse"

Along with creativity and personal
initiative I would add intuition, because
without it, when you meet an obstacle,
during the construction of a proof you
wouldn't know what to do anymore;
instead, a creative and intuitive person
might find a solution

Creativity and personal initiative may lead
to the discovery of alternative proofs
sometimes correct, sometimes not.
Anyway, such proofs may be useful to
shed light on some properties not yet
found

Many times creativity and personal
initiative are the ones that lead to the
birth of a new proof that may be easier
or more complicate than the previous one

It is exactly creativity that makes us to
think at 360 degrees, and to explore
several ways and methods for a proof

If it were like that the several sciences
wouldn't have been evolved. There may
exist several ways to prove a thing
therefore it is not useful to "fossilize" on
only one procedure. Furthermore, to go
through new paths might lead to the
discovery of new theorems or anyway to a
greater consideration on points previously
little considered

Sometimes creativity helps to solve
problems, also in Analysis

You need to find the most efficient
scheme in any way but it is correct
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Hypotheses vary from
theorem to theorem;
therefore it is not possible to
apply the same method.

Without creativity there
wouldn’t be progress.
Creativity as another
possible “reading key”

Because personal initiative may allow to
reach the same conclusion from different
start points. Not always the proof you
find in the books is the easiest. The
single with his/her creativity may build a
path to follow that is easier

Many times personal initiative and
creations help to solve a proof ina
correct way

Often creativity and initiative may
shorten proving processes very difficult

Many times with smartness you may find
faster methods that simplify proofs

Mathematics is indeed one of the
sciences where human genius is very
important. Some very difficult proofs
were born thanks of amazing intuition.

It is thanks of famous mathematicians'
creativity that many theorems have been
discovered. Following fixed schemes
cannot be enough, because sometimes you
have the solution in front of your eyes
but you cannot see it with the eyes of the
mind

You cannot follow a fixed scheme, due to
the fact that the hypotheses are always
different. If creativity and personal
initiative couldn't find a place in the
construction of a proof, there wouldn't be
any progress (i.e.: new proofs of the
validity of statements)

Very often intuition has played in the
history of the human development a
fundamental role

Because personal intuitions may be a
reading key different from prefixed
schemes

There is no mathematical
science without creativity

There doesn't exist mathematical science
without creativity and personal initiative
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and personal initiative.

On the contrary any
machine could make any
proof, that is not true,
therefore intuition that is a
human being characteristic
is fundamental.

Theorems and axioms may
be fixed, but what leads to
the construction of a proof
is the intuition.

A proof is not something
fixed (in the sense unique)
at all therefore, creativity
and intuition are basilar
tools that help the
construction of a proof.

Otherwise any machine could do any
proof. Intuition is fundamental

They are two fundamental
characteristics to prove a theorem

Theorems and axioms must be “fixed",
but often it is intuition deriving from
personal initiative that leads to the
construction of a correct proof

Because without creativity and personal
intuition you could never reach a complete
construction of a proof

Very often intuition and some intelligent
tricks are needed

I believe that intuition and personal
creativity may help in a decisive way the
construction of a proof that is not
absolutely a “fixed" thing

Rationality and logic non
always have fixed schemes.

Not always do logic and rationality have a
fixed scheme

Creativity as part of the
process for the formulation
of a hypothesis

Creativity is part of the formulation of an
hypothesis

The problem to leave the
rationality that represents
something certain, to
approach creativity and
personal initiative that
represent uncertainty.

I always heard my teachers saying that
personal initiative and creativity are
important, I agree but my extremely
rational personality prefers always and
anyway a fixed schema

For new things we need new
ideas, new methods,
something not seen before,
even though what we
already know has its
importance.

If T have to prove a thing I have never
proved before, it is more than logical to
use methods never used before, not
forgetting the ones previously used

Several star points for the
construction of a proof,
therefore creativity and
personal initiative are
necessary.

Many times to build a proof you may start
from different points (I believe) and in
my opinion even if there might be a fixed
scheme, creativity and personal initiative
are always important.
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Proofs as product of

Many proofs are the product of

creativity and personal creativity and personal initiative 4
initiative.
No universal scheme Being any problem different from the
because any problem is others, it would be wrong to think to 1
different from the other solve it adopting procedures that follow a
universal scheme
Creativity and personal Because it is necessary, in order to make
initiative as tools to others understand, to use any kind of 1
communicate and to make | o0 tool, therefore creativity and
oneself understand initiative are at the basis of that.
The idea you may start from | You may start from a more intuitive idea
an intuition to prove the to proof algebraically the validity. 1
“algebraic” validity of an
idea.
80
True. Why?
Mathematics as an applied | Unfortunately mathematics, in my opinion,
science, therefore creativity | cannot be invented, but it is applied. 1
and personal initiative Therefore, apart from intuition (that
cannot be employed anyway takes me to apply a
preestablished procedure), I think that
fantasy, and creativity, are not involved
in mathematics.
Mathematics as a universal | Because they are tools of mathematics
science that must use 1

universal tools,
understandable by
everybody. Creativity and
personal initiative cannot be
used because are subjective.

and they must follow a standard
procedure in order to be universal and of
easy use
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Creativity and personal
initiative cannot give any
contribution to a proof

Personally, I don't see how creativity and
initiative may give a contribution to the
proof of a theorem or of a statement

Creativity and personal
initiative may be employed
only if based on scientific
base

You may give space fo intuition and
creativity, but always on scientific bases

There are fixed rules that
cannot be changed.

Even there may be several ways to prove
you cannot change the rules

There are some rules that has to be
followed

Creativity is part of the
formulation of a hypothesis;
therefore, it cannot take part
of the proving process.

I believe that creativity is part of the
formulation of an hypothesis

There are no inventions; a
proof is based on concrete
things.

You don't have to invent things, but they
must be proved based on concrete
principles

Mathematics is a whole of
fixed rules and schemes that
must be followed with rigor.

A proof is a mathematical procedure that
doesn't leave space to conjectures or
creativity in the sense that any employed
procedure must follow laws that are ina
certain way and that cannot be in any
other way. All you use for a proof is
regulated by mathematical laws

COMMENTS

80 students out of 89 claims that creativity and personal initiative are fundamental

parts of a proving process. Many different justifications have been given to explain such

a choice. For example, creativity and personal initiative are fundamental but are

acceptable only when they respect a sort of rigor, peculiar characteristic of mathematics

science; furthermore, creativity can be taken on consideration when is based on a cultural

background and on recognized knowledge. Always in this case they underline that the

limitations about the rigor are not related to the proof’s structure but to the concept to be

used.
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For other students creativity and personal initiative are considered as a smart
mind’s characteristic. Furthermore, the aforementioned skills have to be considered
possible tools of a proving process, because there is no only one way to approach a proof,
namely among the different ways to tackle a proof there is intuition and creativity.

Nevertheless, there are two different explanations about this issue; some students
justify the use of creativity and intuition arguing that they are just one of the several
methods which can be used; others state that there may exist several ways to approach a
proof because of creativity and intuition.

Students consider that many times proofs are very difficult; creativity and
intuition may help to approach such a process in a easier way, not only but they enhance
scientific progress and new knowledge. A possible explanation might be that students
recall their scholastic knowledge about great philosophers, mathematicians and tinkers of
the history.

In other cases creativity and intuition may represent the only tools useful to build
a proof; or an important tool that allows to look at the problem from different points of
view; to reason at “360 degrees”, to look beyond what the “eyes of mind” may see.
Prefixed rules may become a cognitive obstacle that may be overcome by intuition or
personal creativity that also enhance the development of sense of critique. Therefore,
creativity and intuition as an instrument of exploration, of construction of new
knowledge, it is considered as a “reading key”.

Furthermore, creativity and intuition are necessary to enhance fantasy; for some
students fantasy is an important component in the process of proving, because many
proofs are very artificial, and in order to find such artifices you need a lot of fantasy.
Probably students think of proofs like the one for Lagrange theorem, Taylor theorem, or
the first derivative of the product and so on.

Finally, there are no fixed schemes; any problem is different to another one, for
this reason we have to employ creativity and personal initiative. In addition no machine
may build any kind of proof therefore creativity is needed. To conclude, creativity and
personal initiative are the tools to communicate with the others, and to make one

understand.
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The remaining students, exactly 9, argue that creativity and personal initiative
cannot be part of a proving process. First of all because mathematics is an applied science
and the previous two cannot be applied; mathematics is a universal science that must use
universal tools, understandable by everybody, and creativity cannot be considered
universal, on the contrary it is subjective.

Furthermore, in mathematics there are fixed rules that cannot be changed. For
some students creativity is part of the formulation process of a hypothesis, therefore it
cannot be part of a proving process. It seems that the formulation of a hypothesis and the
process of proving be two disconnected things.

Finally, mathematics is seen as a whole of fixed rules and schemes that must be
followed with rigor.

Some student’s excerpts follow:

v Because, if you mean creativity in the sense of freedom to start from where you
want, | think it is possible to do it, what it is important is to be able to prove what
you want. Probably, the limitations are not much in the structure of the proof but
in the concepts you may use. A rigorous proof uses abstract concepts because
stillness, invariability in time of the proof must be guaranteed

v' Creativity in mathematics is the most difficult thing, but also the most beautiful (if
correct). It may simplify steps that are only mechanics therefore boring. What is
fundamental, anyway, is the fact that mathematical rules have to be respected.

v There are many ways to prove a theorem. Therefore personal initiative and
creativity are at the basis of a proof

v Even the history teaches us: “a spot of genius” may lead to a proof that is totally
out of traditional schemes adopted to build a proof

v" Many times without intuition, creativity, and personal initiative you cannot find
an efficient proof

v | think that creativity and personal initiative are the most important tools in the
construction of a proof, because they help to think of and to wonder about
problems of different kind (even though later on some of them may result not
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useful) and creativity and personal initiative develop a capacity’ of personal
critical analysis

v Creativity and personal initiative may lead to the discovery of alternative proofs
sometimes correct, sometimes not. Anyway, such proofs may be useful to shed
light on some properties not yet found

v It is exactly creativity that makes us to think at 360 degrees, and to explore
several ways and methods for a proof

v It is thanks of famous mathematicians’ creativity that many theorems have been
discovered. Following fixed schemes cannot be enough, because sometimes you
have the solution in front of your eyes but you cannot see it with the eyes of the
mind.

v' Theorems and axioms must be “fixed”, but often it is intuition deriving from
personal initiative that leads to the construction of a correct proof

v’ Being any problem different from the others, it would be wrong to think to solve it
adopting procedures that follow a universal scheme.

v" There are some rules that has to be followed

v A proof is a mathematical procedure that doesn’t leave space to conjectures or
creativity in the sense that any employed procedure must follow laws that are in a
certain way and that cannot be in any other way. All you use for a proof is

regulated by mathematical laws

6" guestion A PROOF IN CALCULUS HAS THE FOLLOWING ROLE
1% year of
college
(out of 89)
1 To convince somebody about the validity of a statement
1
2 To explain why a statement is valid
19

3 To establish the validity of a statement
22
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le2 To convince somebody about the validity of a statement and To
explain why a statement is valid

1e3 To convince somebody about the validity of a statement and To
establish the validity of a statement

2e3 Toexplain why a statement is valid and To establish the validity of

a statement

26

le2e3 Toconvince somebody about the validity of a statement and To
explain why a statement is valid and To establish the validity of a statement

Something else (Specify)

1+ To make hope that you didn’t waste your
time for something without sense

1+2+3+ All these things, but only in a
certain sense. For example, in the history of
physics before the “revolution” brought by the
relativity, all proofs were valid exactly “in
function” of the conceptions (in this case
“space” and “time”) of time, therefore you can
say that they establish the validity of a
statement until a change given by a new
revolution

2+3+ something else

Jacopo explains for each points he has chosen
his point of view. He has chosen

2. To explain why a statement is valid, and he
writes: It is interesting the relationship
between the several hypotheses and the related
steps of the proof.

3. To establish the validity of a statement, and
he writes: It is important but only for whom
who is dealing with mathematics at high levels.
The statements given to us as students we know
in advanced that are true

Something else, and he writes: It is necessary
to underline in which cases a theorem may be
used, with particular attention to the control of
all hypotheses. Very often you make the
mistake to use a rule without verifying the
hypotheses (I say it for personal experience)
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To convince somebody and themselves about the validity of a statement

89

The predominant idea about the role of a proof is the following: it must explain and

validate.
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Appendix B: Transcripts of students’ protocols

Alice and Roberta (fixed point problem)

R1: RA: domain from [0,1] to [0,1]

R2: R: fixed point on the bisector line and therefore...

R3: A: (she draws the bisector line) therefore this is the (1,1) and (0,0).

R4: R The fixed point must be between these two points ...(and she signs the two points
(0,0) and (1,1) going along the bisector line)

R5: A: Exactly...but it could have only these two points [(0,0), (1,1)]; if it were in this
way (and she signs a concave function over the bisector line) therefore there is a fixed
point for sure, because there are these two points of the bisector line (and she signs (0,0)
and (1,1))

R6: R: eh...no, because the function could start from here and from here

R7: A: you are right, it is true; it is defined fromOto 1...

R8: R: oh yes...the function starts from O and then there is a point here for sure (she
underlines the segment from 0 to 1 on x-axis) and it arrives at x=1, therefore there is also
a point here for sure (she underlines the side of the square of vertexes (1,0) and (1,1))
R9: A: oh right...then it has to intersect the bisector line for sure...suppose that it does
like that...

R10: R: hmmm...the function must have a fixed point for sure...because it has to pass
from here to there

R11: A: yes...it must go through for sure...then the point of abscissa x=0 could have y=0
then it would have a fixed point or it could be >0 then it doesn’t have...and the point x=1
could have y=1 and then it would have a fixed point or #1 then it would not have the
fixed point.

R12: R: then it would intersect in the middle...] mean in a point whatever (and both
Alice and Roberta draw hypothetical functions)...l was thinking...only one...it could

have more than one...



221

Pyl
[
w

. A yes probably yes...(Alice draws a kind of sinusoid)

Pyl
[y
I

: R: but in a function for each x must correspond ay...

A
[
o1

. A yes...this is always a function

A
[
(o]

: R: ah...yes yes...exactly

o)
=
~

. A: therefore at least there is one point for sure

o)

R19: R: yes there must be for sure...because anyway one point here and one point here
(she signs the extremes) ...here | get confused because we have more than one...

R20: A: you have more y...

R21: R: yes exactly

R22: A: | mean, given a y there are several x corresponding to it, but not that for an x
several y correspond

R23: R: yes exactly...

R24: A: we would better write something

R25: A/R: eh yes...there is one for sure

They start writing...

R26: R: then this function must have a point here and one there (they sign the two sides
of the square) for sure

R27: A/R: (they start organizing a proof going through the fundamental steps they
touched in the construction of their conjectures)

R28: A/R: then the function must start from 0 and have f(x) on this side and arrive at the
point of abscissa x=1 and f(x) on this side then...there is the bisector line that goes
through (0,0) and (1,1)

R29: R/A: therefore we write...

R30: A: I was thinking...there must exist a point of abscissa 0
R31: R: exactly...and the y...

R32: A:and they...

R33: R: the y between 0 and 1

R34: A: (Alice writes) then P(0, 0<y <1) because the domain...
R35: R: it is defined from 0 to 1

R36: A: dom=[0,1] and cod=[0,1]
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R37: R:and it must be the same for the point of abscissa 1

R38: A: (Alice writes) it must exist too...P; (1, 0<'y <1), | would start with the limit
cases, P(0,0) and Py (1,1) or when (she goes with her finger from the point (0,0) along
the segment 0-1 on the y-axes, and she does the same with the punt (1,1) downwards)
R39: R: I understood what you mean

R40: A: the cases where P and P1 are the fixed points (and she writes P(0,0) e P1(1,1))
R41: R: (she starts saying...signing possible functions on the graph) if it did like that
(and she signs a concave increasing function) then there are two, if it did like that...there
would be only one and in the other way there would be more than one, there here is one
for sure.

R42: A: Therefore this (P=(0,0) and P1(1,1)) is not the limit case because we have two
fixed points

R43: R: let’s explain why...

R44: A: there could be fixed points every time that the function intersects the bisector
line...but then there could be infinite fixed points.

R45: R: well we can’t know this, but we know for sure that there is one fixed point (at
least)

R46: A: once we have proved that there is one we are done, we don’t have to prove that
there is more than one fixed point.

RA47: R: now let’s do the cases where the function does not go through (0,0) and (1,1) but
a point over here (and she signs the segment 0-1 on the y-axis)

At this point they write on their protocol:

If the function f(x) goes through P(0,0), a fixed point is P; There could exist other fixed
points in the case that the function intersects the bisector line.

In the same way, if the function goes through the point P(1,1). In all other cases the
function will have to go through a point with abscissa 0 and a point of abscissa 1 (for
hypothesis). In these cases the ordinate of the point with abscissa 0 will have to be 0 <y
<1, and the ordinate of the point with abscissa 1 will have to be 0 <y <1. Being the

function continuous for any path satisfying the aforementioned conditions will have to
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intersect the bisector line in at least one point (on the bisector line lie all the fixed
points).

R48: A: anyway...we could also prove it taking a square...a point running on a side and
another point running on the opposite side...then we link the two points...you can do a

non-linear path too, and you see that the function always intersects the bisector line

Serena and Francesca (limit problem)

R1: S:: hgoes to zero...xpth...

They immediately draw the graph visualizing Xo, Xo + h, f(Xo), f(xo + h)...
R2: S: f(xo+h)

She looks at it on the graph

R3: S: when h — 0 this gets closer here and also f(x.h)

RA4: F: this difference is exactly...

R5: S: it goes close to f(Xo)...

R6: F: exactly...

e - . f(x, +h)
R7: S: anyway, this difference goes to zero...and if we separate them? o
f(xoth) — f(Xp)...

RS: F: f(X(;]Jr h) (%) and then we add it...

R9: S/F: let us write it down better: Iiml f%+h) 1) +l ) 1% =h)
h—0 2 h h 2 h h

R10: F: this (referring to the first parenthesis) is our ’(xo) therefore %f’(xo)

R11: S: that thing there (referring to the second parenthesis)...

R12: F: it will be a difference quotient as well...because if you look at the drawing...from
this you take off this and divide by h; from that you take off this and you subtract h,
therefore the difference should be the same thing...

R13: S: then...1/2 F'(xg) - 1/2 Lirrol( f (:0) - f(XOh_ h)jthis goes to zero...
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R14: F: hmmm...

15: S: in my opinion is wrong...ah...but wait...here there is —h therefore this becomes

...then f*(xo)...

+

o]
19: F: yes...also because basing on my intuit | would have said that the limit would go

f(xo) f(x—h)
h h

ml_|

to f’(Xo)....therefore ( ] is the difference quotient

Francesca repeats it to me

R20: F: We did it very algebraically...and we said...first we add (%} and then we

f (%)

| add and subtract o

1(f(xo+h)_ f(x%—h)j

subtract it...first we take out 1/2 ... > .

therefore here taking it out, | have exactly the difference quotient, thus I have f* (Xo)
here...
R22: 1: here can | say that it is f'(xo)?

R23: F: (f(xo —h)- f(XO)j let us change the signs...—%( flx)= 1%, _h)j and we

h —-h

R24: S: that the difference quotient can be [f(x0+hh)—f(xo)j but also
(f(xo _h)_ f(xo)j

—h
R25: I: Why?

26: S: because h goes to zero therefore —h goes to zero and thus even this is f’(xp), then
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Matteo and Marco (fixed point problem)

R1: Matteo: this function is in the middle, I would say...l mean...it goes from here to
there

R2: Marco: from 0-1 to 0-1

R3: Matteo: if the function starts from 0 and goes up and goes down, it takes all the
values one time...and we have two fixed points.

R4: Marco: The fixed points are these, then?

R5: Matteo: the function must have fixed points, if we find such a function that doesn’t
have fixed points, we have solved the problem; on the contrary, if we have to prove that it
has a fixed point, then it is amore difficult.

R6: Matteo: | suppose that if the problem asks, the function will have a fixed point.

R7: Marco: How can we find this fixed point?

R8: Marco: a fixed point is here, another one is here...

R9: Marco: therefore, the fixed points are those that have y = x?

R10: Matteo: | would say yes...l would say that the fixed points are on...y = x...and if
our function must assume all the value of the image in such a way if it is continuous it
must go through this line...there will be a point for sure...

R11: Marco: we know that starts from x=0 and arrives at x=1, it has to arrive here.

R12: Matteo: supposing that it does not have to intersect this thing, and given the fact
that it must take all the values from 0 to 1, the value with x=0 must exist, if for this x=0y
were equal to 0 we would have a fixed point, therefore it does not work, then y must be
different to 0 and at this point we would have one of these points here. When we want to
go to x=1 or y=1 and we don’t want to, therefore y = 1, then we have one of these points
here and one of these points here to go from here to there in any way we have to go
through here and therefore any function which brings one of these points here to a point
there must intersect the bisector line, for sure...

R13: Matteo: in my opinion we should think of a counterexample, somebody saying that
it is possible to pass, | have to find the way to prove that we can’t pass without

intersecting the line, at
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R14: Matteo: io suppongo che in qualche modo la x = 0, y = a con a # 0, poi abbiamo X
=1,y =bcon b =1, prendo una f(x) qualsiasi..ok...abbiamo 3 casi: a > b questo ¢ il
punto a e questo ¢ il punto b e c’era un teorema, forse Lagrange o qualcosa del genere
che ci assicurava che intersecava qualcosa...che c’era qualcosa che intersecava
qualcosa..se sono uguali 0 se uno é piu alto dell’altro

R15: I: Matteo tries to explain to Marco

R16: M: we have to prove that f (x) intersected with y = x is not empty, different to the
empty set. We have to prove that it is possible to go from here to there without
intersecting the bisector line, but if a > b taking a as the point where x = 0 and that lies on
the upper side of the bisector line, b the point where y = 1 and b lies on the lower side of
the bisector line there must be a point between the two where the x = y...there must be
for sure and | can do the same thing changing the position of the two points
respectively...or collocating them at the same height...I have to write it down in formal
way...

I: Now they explain the proof to me

R17: Matteo: by contradiction we take ‘a’ that is greater and = 0 and ‘b’ minor, now we
say by absurd it doesn’t go to, at this point ‘a’ will take in this point here any point in the
middle and that a = y, therefore a point in which y > x always because in a first moment
we said that it was greater therefore y must be greater than x and in this other little point
here and here and here it will always be greater strictly greater we arrive here where it
must be greater than X, at this point we have to take all these points here; its value in 1
cannot be less than 1, equal 1 or more than 1 because it must stay in this interval here,

therefore it is absurd.
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Alice and Maggialetti (limit problem)

R1: I: they read the text

R2: A: at the end...it is the difference quotient...only that there is 2h instead of h...

R3: M: eh yes...

R4: A: no...walit...

R5: M: but...this part here the difference quotient is not like that (he refers to f(xo-h))

R6: A: no in fact

R7: M: it is similar to the difference quotient...then...the difference quotient is...(they

F(xp +h) = T(xo)

think for a while and then they conclude) .

...yes...yes it is similar

to...but there is not f(xo-h)
R8: I: they ask me if it is true that the difference quotient is
fF(xo +h)— (o)
h

f(x, +h)— f(x,—h)
2h
R9: A: I write also the difference quotient.

At this point they write Ihlrrg

R10: M: with the definition of limit...like we write this...and we take Ve
R11: A: b ut we have two
R12: M: oh yes...in other words we have the limit of two functions, I mean, the limit of

T +h) minus the limit of w and we cannot say that is the limit of the

difference, so to speak, we take the result of this...

R13: A: but with the limit...what we arrive to say? Because...at the end...we know how to
calculate this limit...we know that the function is defined and differentiable, therefore we
know that is continuous, then we don’t need to do all the calculation of the limit...

R14: M: you are right...that’s true

R15: A: h that goes to zero...

R16: M: differentiable...therefore continuous
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(X +1) = (%)

R17: A: You know what we can do? In

there was the graph to show

that it was the slope...

R18: M: yes...of the line...

R19: A: perhaps this is related to the slope but shifted up or down...

R20: A: I mean...when h — 0...do you remember the graph?

R22: M: no...but if we take this point here it will be X, and this f(Xo)

R23: A: this distance is h therefore this is Xg+h

R24: M: therefore this is f(xo+h)...ah...and this is f(xo+h) — f(Xo) (and they sign on the y-
axis such difference)

R25: A: then...when h —0...0h yes...this becomes the tangent line in this point here
R26: M: yes right

R27: A: | mean...what does the chord do?

R28: M: namely, this is the slope of the tangent line to the function...

R29: A: exactly...was the drawing in this way?

R30: M: I don’t remember...anyway we have taken a function (he seems to be sure of
what they did)

f (X, +h) = f(x, —h)
2h

R31: A: now let us try to draw this ( )

R32: I: at this point they build the function

R33: A: in my opinion this could work as a difference quotient...
R34: M: but the difference quotient is the slope of the tangent line...
R35: A: yes...

f (X, +h) = f(x, —h)
2h

R36: M: and there, it goes...here what does this ( ) represent?

[..-]

R41: A: It could represent the slope of the tangent line...

R42: M: the tangent line in which point...?

R43: A: We need to see in which point...then, if h goes to zero...let us see what happens
when h goes to zero...it means that...here there is a distance of 2h...between xo + h and

Xo—h
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R44: M: si
R45: A: when h goes to zero, this becomes zero and goes to Xo, this one becomes zero and
goes to Xo...therefore all the values go to Xo..while here (she refers to
f(x, +h)— f(x,)
h
h goes to zero goes to...wait...goes to zero...
f(x, +h)—f(x,)
h
RA47: Alice signs on the y-axis f(xo+h)-f(Xo) and f(Xo)-f(Xo-h)
f (X, +h)—f(x,—N)
2h

)...too...at the end they always go to X,...because the numerator when

R46: M: here (referring to the expression

) it goes to...zero...oh...OK

RA48: A: then...here we have ... f(xo-h) i1s equal to f(xo+h)-...

R49: M: minus @

R50: I: they think if they can make a graphically sense of f(xo-h)...but they realize they
don’t arrive at anything, since they arrive at an identity, therefore they change strategy

R51: A: but we can write it as.. mean the Ilimit of this one...
Ih'fg f(x, + h)z—hf (x, —h)
addition and subtraction of limits in such a way to have inside of the expression

f(xo +h)—f(Xo)
h

...as a matter of fact we know the numerator, we can write it as

R52: M: OK...you take out %

f (X, +h) = f(x, —h)
h

R54: M: do you want to have the difference quotient?

R53: I: Alice writes 1Iim
2 h—-0

R55: I: at this point they think for long time
R56: A: we could write...(she adds and subtracts f(xp)) and then we separate

it..%(lim PO+ = (%) i F o _hr)1_ f (%)

h—0 h h—0

)the first become f(xo) and the

second one?...1 don’t know...
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R57: M: isn’t it the difference quotient with the difference that there is a minus?
Therefore it is the same thing but considered at the other side...

f(Xo+hr)]_ f%) the limit ...no...let’s put -

R58: A: therefore it becomes %2 (Ling

Ling ...therefore this (referring to the first limit) is the first derivative

f(xo _h)_ f(xo)
h

R59: M: and this one?

R60: A: it seems like another piece of the function

R61: M: | mean they are two...this represents this piece, and this represents this other
piece

R62: A: yes, but then with the limit you go back here...

R63: M: that’s true ...

R64: A: then it could be zero...I mean...in both cases you arrive at the slope of the
tangent line here. Therefore, it is the same thing of doing the slope of the tangent line
here, minus the slope of the tangent line always here...

R65: M: you know...

R66: A: therefore doesn’t it become zero?

R68: M: yes. Zero.

Daniele and Betta (limit problem)

Daniele draws a function and signs Xo, Xo+h, Xo-h, f(Xo), f(Xot+h), f(Xo-h).

R1: D: Xgt+h...

R2: B: f (Xo)...

R3: D: in my opinion it is the same thing... when you do the limit of the difference
lim f(x, +h)=f(x,)

quotient, you do "° h ...this minus this over h...

R4:D: he signs on the drawing done on the protocol, this | divided by this—)
R5: B: because f(x0 + h)...

R6: D: minus f(x0)...is this

R7: B: Ah...OK...ours would be this over 2h...it is the same thing...
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R8: D: therefore...it would be h— 0...how much is this?...eh...it will be the slope of the
tangent line...

R9: B: namely...the first derivative

R10: D: in Xo...
R11: I: if you should justify it rigorously?
R12: B: this is the same...
R13: D: because this limit is equal to limit for h going to zero of this...
R14: 1: 1 didn’t understand...
R15: D: because the limit of the difference quotient is equal to the limit of this (and he
signs f(x, +h)—f(x,—h) )
2h
R16: B: this is equal to this (they indicate the two limits...)...we done it graphically

: D: | mean, we do this...it would be the ratio between this difference \ and this one

PY)
\‘

1

— and in our case it would be the ratio between this difference | and this one — |,
therefore, X0 + h —(x0 — h) that would be 2h...and this one that would be f(x0 + h) — f(x0
— h)...therefore, the limit for h that goes to zero would be...I mean both go to x0

R18: I: do you think this justification to be rigorous?

R19: D: Probably we didn’t prove it..but in theory...I mean...

R20: I: Do you think the proof you have done at graphical level to be rigorous? In the
sense...if you asked you...in a written proof you are asked to prove it in a rigorous
way...you would stop here?

R21: D: at an intuitive level, yes...but in my opinion it is not a rigorous justification

R22: I: why?

R23: D: because if somebody explained it to me in this way...l wouldn’t...

R24: 1: you wouldn’t believe him?

R25: D: no...l mean...but it seems to me to know it only in this way...

R26: I: (note: Daniele thinks)

R27: D: eh yes...anyway it is correct...l mean, the difference quotient would be this
chord ...namely, it would be the tangent line of this angle, right? The difference
quotient...therefore, for h that goes to zero, this...this chord...shrinks more and more till
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when it becomes a point and it is the tangent line in that point...in this case it is the same
thing

R28: I: If you were told in this way...it would be enough for you? Would you be
convinced if one of your classmates explained it to you in this way? Would you say....ah
OK...yes, yes...or would you have some doubts?

R29: D: we should write it down...

R30: I: how do you write such a thing?

R31: D: firstly, if I have an equation and | do the limits of the both parts...it is the same
thing...

f (X, +h) - f(x, —h)

R32: B: therefore, if you prove that this is equal to this (namely, o

f(xo +h)—f(x)
h

R33: D: eh...therefore...yes but | must...it would be...
) f(x, +h)—f(x;) (X, +h)—f(x,—h)

and )

2
h 2h
And they simplify in the following way
) f(x, +h)- f(xo): f(x, +h)— (X, —h)\2

N P2l

R34: 1: but then you have already given for sure that this and this one are equal...
R35: D: ehm...yes...
R36: I: no, you have to prove it. I thought you would want to prove that
f(x, +h)—f(x, —h) _ f(x, +h)— f(x,)
2h h

R37: D: | wanted to prove that when this becomes zero even this becomes zero...(note:

he makes an expression like to underline he knows to have said something just to say
something)

F(x +h)—f(x,—h) _ f(x,+h)—1(x,)

R38: I: Ah...1 thought you wanted that o .
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R39: D: : yes...but you are right! | already thought to be true the equality...then, |

looking for...no, no

R40: B: but if you write the two expressions this from one side of the equal sign and this

from the other side and for each thing you show what correspond on the graph...ah

yes...but in this way we start always from the figure...

R41: D: | can’t write...it is not correct...but...when this becomes zero...if it is equal to

the other...even the other one has to become zero...

R42: 1: senx for x going to zero becomes zero, x for x going to zero becomes zero, but

they are not equal...

R43: D: ah...that’s true...therefore (they continue to manipulate the expression and

arrive at the second row 2f(xo+h)-2f(xo)=....after that looking at the graph they arrive to

say that f(xo+h)-f(xo-h)=2f(xo) therefore | substitute here and I look what happens, it

would be f(xo + h) — f(xo — h) = 2 f(Xo)...therefore this plus this must be equal to

this...now | substitute...

R45: D: can’t | put this equal to ¢ (perhaps | said already said it) and this is equal to c?

R46: I: the limit?

RA47: B: not only what we have inside...namely...

R48: D: eh...no no...this is a quotient...l mean it would be this and this...they can be

also different...but then the limit is the same...

R49: B: yes...but we have proved that this is equal to this...namely, according to our

drawing...ok that they could be different...but...let’s try to do as she says (note: | have

told them that to prove the equality between two things you have to manipulate both

separately till when one becomes equal to the other).

R50: D: I have understood...but how do you do?

R51: B: | mean...let’s multiply, divide by 2...something to make it equal, do you know

what | mean?

R52: D: then...wait...it would be...this minus this divided by 2 (note: he is looking at the

f(x, +h)— f(x, —h)
2

graph signing |) + f(Xo — h)...we need it...because this (note:

f(x, +h)—f(x, —h)

5 ) it would be this plus this which would be f(xo)...and therefore we
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substitute here... f(xo + h) minus this...it would be 2(f(xo + h) — f(xo — h) + f(Xo-h)

divided by this and multiplied by 1 over h

f(x, +h)+ f(x,—h)
h

f(x, +h)+ f(x, —h)
2

f(Xo+h)...and making the calculations it becomes this...

R54: D: graphically it would be it would be this distance, right?

Then...we know...this would be and to that we added

R55: I: do you think of this proof of a rigorous proof? Therefore, with this you would be

sure that such limit corresponds to the first derivative.

R56: D: the calculations are correct...but if the function were like that...no...this would

be Xo...this Xg+h then | have f(xo) and f(xo+h)...the first rate gives me this chord right? It

gives me the tangent of this angle...the slope of the line through two points...and in the

other it gives me this...right?

RS57: 1: yes...

R58: I: Daniele has some perplexity about the drawing...something doesn’t sound

correct...then | make a third drawing...

R59: I: Daniele is surprised by the fact that the equality they make before the passage to

the limit would bring to parallelism between two lines that go through a same point

R60: D: it is obvious that passing to the limit these two points coincide...namely | can’t

f(xg+h)+ (X —h) _ F(x+h)+ f(x,)
2h h

R61: D: in fact if f(x) = g(x) then the limit of f(x) is equal to the limit of g(x) but not the

write that because it is false...

contrary...

R62: B: instead we...proving it in this way we proved the equality

R63: I: because what did you say?

f(x, +h)+ f(x, —h)
2

end in this way...for sure...

R64: B: f(xo) =

+ f(Xo-h)...we have seen it graphically...but at the

R65: I: f(Xo) you said...but why did you assume that...
R66: B: these two are equal...
R67: D: ah, that’s true...in fact...
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A
o
[e¢]

- 1 1t’s not said that f(xo-h) and f(xo+h) would be equidistant from f(xo)

A
o
©

: D: we did a drawing that misled us

A
\‘
o

. I: the drawing misled you but it also helped you to understand the mistake

Py}
~
[E=N

: D: I mean it is valid only if it is linear

Py)

R72: B: therefore it doesn’t work...therefore f(x) is not equal...and therefore

algebraically we can’t do it...

R73: 1: yes...but not like this...

R74: D: in our case we have to write that f(xo) was equal to this plus this that would

be...l1 would like to write f(x) in function of these two...

R75: B: but we don’t have to prove that this is equal to this...

R76: I: exactly...you continue to stuck with the idea to prove that this is equal to

this...you said an important thing about which implication is true and which is

not...therefore these two have the same limit but probably they are not equal

R77: D: but now neither the graphic one convinces me anymore...because we used the

symmetry respect to f(x0)...no, no...that one is true

R78: B: ah...yes yes...

R79: I: what has been the conjecture rose by the graph? Therefore...from the graph you

said...probably is f’(x0)

R80: D: yes...

f(x, +h)+ f(x,—h)
2h

R82: D: we have to say that here...l mean...but it is always the middle point of this

R81: I: start from that conjecture, namely limit of =" (Xo)

segment

R83: B: if we wanted to find f(xp) in function of something...but related to this figure...
R84: D: now | am going to say something stupid...but at the numerator we have a
function that goes to zero for h going to zero, right? And also below...therefore we have
to prove that this has the same order of this...then we have ac...

R85: I: but who told you that it is the first derivative?

R86: I: Daniele e Betta start thinking how to manipulate algebraically the starting

expression...Daniele starts writing something and asks me if it is correct...they added
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f (%, +h)+ f(x, —h)
2h

’(xo) differing only for the factor %2, and the second I ask why it is also f*(Xo)

and subtracted f(xo) to then they conclude that the first addend is

R87: D: we justified it graphically...

Daniele and Francesca (fixed point problem)

They immediately draw the bisector line as the line of the fixed points

R1: Fr.: there must be an intersection between the function and the bisector line

R2: I: Daniele rereads the text.

R3: Fr.: if there is the fixed point there must be the intersection with the bisector line, for
sure

R4: Dan: there are two for sure...ah no...there is one for sure

R5: Fr: if there weren’t (fixed points) it (the function) would stay all over or all under the
bisector line...the only case would be if the bisector line were the asymptote of the
function...

R6: Dan: but it is not possible

R7: Fr: ...but it is not possible because it is continuous...

R8: Dan: : it is not possible because 1 is between...I mean...the function in 1
exists...that is, here it is included...(ndr: he writes a square parenthesis on 0 and on 1 on
the x-axis and he does the same thing on the y-axis)

R9: Fr: therefore the bisector line cannot be an asymptote, and then if it is not an
asymptote it must cross it for sure...

R10: Fr: (talking to 1) probably we answered...if A is a fixed point it must have an
intersection with the bisector line...the only case for the contrary is if the bisector line
were the asymptote of the function...but, if the function is defined from [0,1] to [0,1]
included...the function is defined in 1 too, therefore at the most the point is (1,1) or it
Crosses it.

R11: I: Daniele draws the function

R12: I: this, though, doesn’t work because it doesn’t take all the values form 0 to 1.

13: Dan: ah it must take all the values
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R14: Fr: ah but then it has two for sure...even more

R15: I: why two for sure?

o)

R16: Dan: (he draws several functions, then he realizes that it is not like that) anyway,
there is one fixed point for sure...if it must take all the values and if we make it start from
here...if it must take all the values it must start from this point...from this...this...because
it can’t come back...to take all the values it must start from the maximum up to the
minimum...if we think of that theorem where if you have a point here and one here it must
go through here, for sure

R17: Fr: it is the Theorem of the Zeros...

R18: Dan: (he is repeating the proof of the theorem of zeros which uses the
dichotomy)... but how can we divide the bisector line?

R19: Fr: then it is not the one of the zeros...it is of Weierstrass

R20: Dan: (he tries to draw the function) it does like this...and then it will go to B

R21: Fr: we can do like this and then going down straight to B

R22: Dan: f(a)>x f(b), namely one of the possible...I mean whatever could be...a could
not do...and yes because b at most is here...that means that this point must stay always
over X

R23: Fr: do you want to say that if a is over, b must stay below, and vice versa?

R24: Dan: exactly, otherwise it doesn’t take everything, but the worst case if a is here to
take all the values it should do like this and it would not continuous anymore...

R25: Fr: why like this?

R26: Dan: because in the same point it takes infinite values...at least I think...wait a
second...if a>0 and b<0 the function must intersect the axis therefore the issue is always
the same...

R27: Fr: oh yes...instead of the x-axis we have a line

R28: Dan: the bisector line...

R29: Fr: ah but then it is done...considering a>0, namely, a is greater than...

R30: Dan: a>x....f(a)...

R31: Fr: ah yes... f(@)>x f(b)<x and we know that must be this because it must take

all the values...



238

R32: Dan: this should be a fixed point f(x)=...let’s do f(x)=c

R33: Fr: and this must be like this because it must take all the values

R34: Dan: or like that or the contrary...no no

R35: Fr: no the contrary not because it can’t go under this, it must a value greater than x
and this one less than x.

R36: Dan: ok divide it in two (he traces a line to divide the bisector line in two...in one
part he draws the axes and he tries to reproduce the graphical proof of the theorem of
zeros)...then we would say if this one is here and that one is there then we have an
intersection for sure, but I don’t remember...

R37: Fr: this is a proof because we said...if there is a point over and a point below and if
the function is continuous...there must be an intersection...there exists a point ¢ such that
f(c)...the theorem of zeros said f(c) = 0...if it is the theorem of Weierstrass...

R38: I: Daniele is not convinced...then Francesca repeats...

R39: Dan: well...but we have to prove that the fixed point exists...

R40: Fr: yes but if we say...this is our condition in order all the values to be taken...it
takes all the values only if one is over and the other one is under...for the theorem of
Weierstrass there exists a point belonging to it...for sure because it said: he put the line in
this way but it is the same thing and it said if a point is over and the other one is under
there exists a point on the line because the function is continuous...therefore it is the
same thing if the line is the bisector line...

R41: I: Daniele thinks...

R42: Dan: (talking to me) is it enough in this way?...I mean, if it is a proof that can be
accepted or not (Daniele explains the proof)...by the moment that it must take all the
values of the Image, a > x b < x...(he corrects himself) f(a) >x f(b) <x

R43: I: what is x?

R44: Dan: x is the bisector line, otherwise if b were here it could not take all the values
of the Image because the function could not do like this (and he traces a vertical line)...
R45: I: 1 mean...because f(b) must stay under the bisector line?

R46: Fr: no no that’s true...not necessarily f(b), but there is a point below the bisector

line therefore if there is a point over the bisector line and one below not necessarily f(a)
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and f(b) if we call 0 ““a” e 1 ““b™, then for the theorem of Weierstrass intersects the line
for sure

RA47: I: why the theorem of Weierstrass?

R48: Fr: because we studied the theorem of zeros that says that if the function is
continuous and there is a point where the function is over the x-axis and one which is
under then there exists an x such that f(x)=0, same thing for Weierstrass...if | shift the
line...perhaps it is not the theorem of Weierstrass...

R49: I: But the theorem of Weierstrass is that one which says (and | state it)

R50: Fr: ah no...anyway, the theorem of the zeros shifted up...for example this is the
line x = 2 there is necessarily a point f(x) = 2 and therefore the same thing if we take the
bisector line as the line...there is a point that is over...one that is under...there must exist
necessarily a point that lies on the bisector line

R51: I: Why?

R52: Fr: because the function is continuous

R53: I: Then prove exactly this...if the function is continuous it intersects the bisector
line...how would you prove that if the function satisfies the conditions then there is a
point of intersection with the bisector line

R54: Dan: If | divide the bisector line in several intervals...

R55: I: how?

R56: Dan: if f in the new interval (a,a) (but it takes it on the bisector line)...if f(a)...
R57: I: but the interval on the line how do you take it? How do you define it?

R58: Dan: | would divide the segment...this is a known distance, isn’t this? It is the

diagonal of the square that is /2 ...and therefore I don’t know...

R59: I:Did you understand what | want to say?...the idea is interesting, but you have to
tell me how you divide the line (the graphic aid is very important)

R60: Dan: if this is o for example...if | divide this which can be considered a
segment...into two equal parts... f(a) is still > a...it means that there could be an
intersection with the bisector line

R61: Dan: | mean I continue dividing it...
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Appendix C: Scanner of the protocols

The following pages present the scanner of the protocols produced by the
students.
The first protocol has been produced by Marco and Matteo in the solution of the problem
about the fixed point (p.244).
The second protocol shows the work done by Alice and Roberta during their attempt to
solve the fixed point problem (p. 245).
The third protocol concerns again the solution about the fixed point and it has been
produced by Francesca and Daniele (p. 246).
The fourth protocol regards the problem about the limit and it is Betta and Daniele’s
work (p. 247).
The fifth protocol has been produced by Alice and Marco and it shows their attempt in
the solution of the problem regarding the limit (p. 248-250)
The last protocol is again about the limit problem and it is the result of Francesca and
Serena’s attempts (p.251-252)
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Francesca and Daniele’s protocol
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Francesca and Serena’s protocol (part 1)
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