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ABSTRACT 
 
 
 

Ferrando, Elisabetta. Ph. D., Purdue University, May, 2005. Abductive Processes in 
Conjecturing and Proving. Major Professors: Guershon Harel. Co-Chair: Fabio Milner. 
 
 
 

The purpose of the present study was to build a cognitive model to identify and 

account for possible cognitive processes students implement when they prove assertions 

in Calculus, specifically a cognitive model that would help to recognize creative 

processes of an abductive nature. To this end, Peirce’s Theory of Abduction and Harel’s 

Theory of Transformational Proof Scheme have been used. The result has been the 

construction of the Abductive System whose elements are {facts, conjectures, statements, 

actions}; briefly, conjectures and facts are ‘act of reasoning’ generated by phenomenic or 

abductive actions, and expressed by ‘act of speech’ which are the statements. At the base 

of the construction of the Abductive System there is also the intention to show that the 

creative processes own some components, and to separate this process from the belief 

that it is not possible to talk about it because it is something indefinable and only 

comparable to a “flash of genius”. The common denominator with Peirce’s work is the 

philosophic spirit on which both works are based. Peirce wanted to legitimate the fact 

that abduction is a kind of reasoning along with deduction and induction, in contrast with 

many philosophers who regard the discovery of new ideas as mere guesswork, chance, 

insight, hunch or some mental jump of the scientist that is only open to historical, 

psychological, or sociological investigation. The definition of Abductive System allows 

the researcher to analyze a broader spectrum of creative processes, and it gives the 

opportunity to name and recognize the abductive creative components present in the 

protocols. From the didactical point of view, it allows to recognize the variety of the 

components of the creative processes, in order to respect them (usually it is not done this 



 x

way at school) and to improve them. Therefore, this framework could help teachers to be 

more conscious of what has to be 1) recognized, 2) respected, and 3) improved, with 

respect to a didactic culture of “certainty”, which follows preestablished schemes. 
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1.  INTRODUCTION 
 
 
 

Research in mathematics has long acknowledged the importance of autonomous 

cognitive activity in mathematics learning, with particular emphasis on the learner’s 

ability to initiate and sustain productive patterns of reasoning in problem solving 

situations. Nevertheless, most accounts of problem solving performance have been 

explained in terms of inductive and deductive reasoning, paying little attention to those 

novel actions solvers often perform prior to their engagement in the actual justification 

process. For example, cognitive models of problem solving seldom address the solver’s 

idiosyncratic activities such as: the generation of novel hypotheses, intuitions, and 

conjectures, even though these processes are seen as crucial steps through which 

mathematicians ply their craft (Anderson, 1995; Burton, 1984; Mason, 1995). 

The purpose of this study is to build a cognitive model to identify and account for 

the possible cognitive processes students implement when they perform conjectures and 

proofs in Calculus, and, more specifically a cognitive model that will help to recognize 

creative processes of an abductive nature. To this end, Peirce’s Theory of Abduction and 

Harel’s Theory of Transformational Proof Scheme are used.  

The questions leading the research are: 

1. Are the definitions of abduction, already given, sufficient to describe creative 

processes of abductive nature? Or, is a broader definition of abductive process 

needed to describe some creative students’ processes in mathematics proving? If 

so, what is that definition? 

2. Is one’s certainty about the truth of an assumption an indication for an initiation 

of abductive reasoning in her or his process? Namely, how much is important the 

level of confidence of the built answer to guide an abductive approach?  
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3. Is there continuity between the cognitive “tools” one uses to build a conjecture 

and the means one uses to establish its validity?  

4. Which elements convey an abductive process? In particular, does transformational 

reasoning facilitate an abductive process? 

Chapter 2 presents the literature this research is based on. The reader will find four 

major tenets: the first tenet is related to the definition of abduction and its role, 

considered under three different points of view: a) the logical and philosophical point of 

view (Charles S. Peirce); b) the solving-problem process point of view (Cifarelli); c) the 

adoption of the definition of abduction in different contexts (Magnani). The second tenet 

concerns the Theory of Proof Schemes (Harel, 1998) and, particularly, the role of the 

Transformational Proof Scheme and Harel’s definition of proof scheme for a subject. The 

third tenet involves the “Reference System Continuity” (Garuti, Boero & Mariotti, 1996; 

Pedemonte, 2002) born as a product of a study concerning the difficulties met by the 

students in the approach to proof. The last part of the chapter deals with the topic of 

proofs considered in three different conditions, namely, a) proof as product; b) proof as 

process; c) the teaching of proof. 

Chapter 3 presents the core of the research. Specifically, it describes the construction 

of the Abductive System, which has been created with the aim to give new tools to 

identify and analyze creative abductive processes involved when the subject is faced with 

a task in Calculus. 

Chapter 4 deals with the methodology, the reader will find the description of the site 

and the participants, and how the data were collected and analyzed, the text of the two 

exercises given to the students who participated at the research project, and the text of a 

questionnaire given to the students with the aim of understanding their ideas about the 

meaning and the role of a proof in mathematics. 

Chapter 5 presents the analysis of the students’ protocols. The analysis of the 

protocols is divided into two phases. The first phase shows a comprehensive description 

of students’ behaviors in tackling the problem; in the second phase the creative processes 

are detected and interpreted through the elements of the abductive system. 



 3

Chapter 6 deals with the discussion of the results brought to light by the previous 

analysis. The chapter is divided into four sections. The first section evidences the 

importance of creative abductive processes in mathematics, but more generally in the 

sciences. The following three sections are dedicated to the analysis of three different 

conditions, which seem to enhance the manifestation of creative abductive processes. 

Briefly, these conditions are: 

1. A didactical contract that encourages and emphasizes creative processes aimed at 

understanding how things work in mathematics (section 2). 

2. The chance of favoring (with an appropriate choice of tasks) transformational and 

perceptual reasoning (Harel, 1998) to pass from the phase of exploration to the 

phase of creative abductive act of reasoning (section 3). 

3. The chance of favoring (with an appropriate choice of tasks) the “reference 

system continuity” between the conjecturing phase and the evidencing phase, as a 

facilitating condition for the success of the student, and therefore of his or her 

satisfaction to fulfill the requirement of the task (section 4). 

Section 5 discusses the kind of experimental sample taken into consideration, which is 

represented by a group of students who voluntarily agreed to participate in the research 

for this project. 

Chapter 7 proposes the conclusions of my research and some implications for further 

research. 

In the last part of the thesis the reader will find the complete student transcripts, the 

scanned samples of their protocols, and the data analysis of the questionnaire given to the 

students at the beginning of the research project. 
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2.  LITERATURE REVIEW 
 
 

2.1  Peirce and his theory of Abduction 

The majority of philosophers deny there is any logic in proposing a hypothesis. 

For them the logic of discovery (if it can be properly called such) can only be concerned 

with the investigation of the methods of testing hypotheses, which have already been 

presented to us. Popper argues, “The initial stage, the act of conceiving or inventing a 

theory, seems to me neither to call for logical analysis nor to be susceptible of it. The 

question how it happens that a new idea occurs to a man…may be of great interest to 

empirical psychology; but it is irrelevant to the logical analysis of scientific 

knowledge”(Popper, 1959). 

 Thus, some philosophers have come to regard the process of constructing and 

selecting a hypothesis as a reasonable affair, which is susceptible to logical analysis. 

They feel that in scientific discovery, there may be more problems for the logician than 

simply analyzing the arguments supporting already invented hypotheses. Peirce writes, 

“each chief step in science has been a lesson in logic”(5.363). He apparently feels that 

there is a conceptual inquiry, one properly called “a logic of discovery,” which is not to 

be confounded with the psychology, sociology and history of discovery. However, most 

contemporary philosophers are unreceptive to this view, giving most of their attention to 

inductive reasoning, probability, and the principle of theory construction. Hanson, a 

staunch supporter of Peirce’s view, writes “But for Peirce, the work of Popper, 

Reichenbach, and Braithwaite would read less like a Logic of Discovery than like a Logic 

of the Finished Research Report. Contemporary logicians of science have described how 

one sets out reasons in support of a hypothesis once proposed” (Hanson, 1959). 

 One point should be made clear; when Popper, Braithwaite and Reichenbach urge 

that there is no logical analysis appropriate to the actual thinking process in scientific 

discovery they are saying nothing which Peirce or Hanson would reject. Peirce’s 
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intention is that the birth of new ideas can never satisfactorily be cleared up by 

psychological, sociological and historical investigations alone. One important task of a 

philosopher is to conduct a logical (conceptual) investigation of discovery. There can be 

good reasons, or bad, for suggesting one kind of hypothesis over another. The reasons 

may differ entirely from those that lead one to accept a hypothesis. Peirce wishes to show 

that reasoning towards a hypothesis is of a different kind than reasoning from a 

hypothesis. He realizes that the former “has usually been considered either as not 

reasoning at all, or as a species of Induction”1 But he states: “I don’t think the adoption of 

a hypothesis on probation can properly be called induction; and yet it is reasoning” 

(8.388). 

 Many philosophers only concern themselves with analyzing the reasons for 

accepting a hypothesis. Hanson notes, “They begin with the hypothesis as given, as 

cooking recipes begin with the trout.” To study only the verification of a hypothesis 

leaves a vital question unanswered – namely, how hypotheses are “caught.” Natural 

scientists do not ‘start from’ hypotheses. They start from data. Peirce’s theory of 

abduction is concerned with the reasoning, which starts from data and moves towards 

hypothesis. 

2.1.1  A general description of Peirce’s theory of abduction 

Before analyzing Peirce’s theory of abduction it is important to clarify his 

classification of inference, which can be schematized as follows: 

 

 

 

 

 

 

 

                                                 
1 C. S. Peirce, Letters to Lady Welby, (Irwin Lieb, ed. [New York: Whitlock’s, 1953]) p.42 

Inference 

Explicative (analytic or deductive) 

Ampliative (synthetic)
Abductive 

Inductive
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In explicative inference the conclusion necessarily follows from the premises, 

while in the ampliative inference the conclusion does not necessarily follow from the 

premises. The conclusion amplifies rather than explicates what is stated in the premises. 

All the empirical sciences use such reasoning. Moreover, it is the kind of reasoning that 

introduces new ideas into our store of knowledge. 

Peirce’s classification differs from the traditional classification because it includes 

a novel type of inference in addition to induction and deduction. Most logicians identify 

induction with synthetic reasoning. They fail to recognize the trichotomy of inferences 

because, Peirce thinks, they have a too “narrow and formalistic conception of 

inference”(8.228). These logicians generally confine their investigation of reasoning to its 

‘correctness,’ “by which they mean, its leaving an absolute inability to doubt the truth of 

a conclusion so long as the premises are assumed to be true” (8.383). This amounts to 

confining their study to deduction. 

Peirce insists that ampliative reasonings are twofold: Induction and Abduction. 

Abduction concerns itself with the reasons for adopting a hypothesis. The adoption of a 

hypothesis on probation cannot properly be called induction; and yet it is reasoning and 

though its security is low, its uberty is high” (8.388). Thus, from deduction to induction 

and to abduction the security decreases greatly, while the uberty increases greatly. 

Broadly speaking, abduction covers, “all the operations by which theories and 

conceptions are engendered”(5.590). These operations are best manifested in the process 

of arriving at a scientific hypothesis. Peirce thinks this process is essentially inferential: 

“Although it is very little hampered by logical rules, nevertheless it is logical inference, 

asserting its conclusion only problematically or conjecturally, it is true, but nevertheless 

having a perfectly definite logical form” (5.188). Its form is:  

 

The surprising fact is observed, 

But if A were true, C would be a matter of course; 

Hence, there is reason to suspect that A is true. (5.189) 

 



 7

Such a process is inferential because the hypothesis “is adopted for some reason, good or 

bad, and that reason, in being regarded as such, is regarded as lending the hypothesis 

some plausibility” (2.511n.). 

Most writers who tackle Peirce’s theory of abduction divide his thought roughly 

into two periods. The transition from one view to another was made around the turn of 

the century, but since this transition takes place over an extended period of time it is 

difficult to pinpoint a definite year. Peirce himself writes in 1910, “in almost everything I 

printed before the beginning of this century I more or less mixed up hypothesis 

[abduction] and induction”(8.227). Writers on Peirce vary greatly on this point. Judging 

from Peirce’s writing, the best account is given by Burks; he names the year 1891, when 

Peirce had retired to his home near Milford, Pennsylvania, as the beginning of a 

transitional decade dividing the two periods. 

In his earlier papers Peirce treats inference, and hence abduction, as an evidencing 

process. The three types of inferences are considered separate and independent forms of 

reasoning. Induction “infers the existence of phenomena such as we have observed in 

cases that are similar,” while abduction “supposes something of a different kind from 

what we have directly observed, and frequently something which it would be impossible 

for us to observe directly”(2.640). For induction we generalize from a number of cases in 

which something is true, and by extension, infer that the same thing is probably true of a 

whole class. However, in abduction we pass from the observation of certain facts to the 

supposition of a general principle to account for the facts. Thus, induction can be said to 

be an inference from a sample to a whole, or from a particular to a general law; abduction 

is an inference from a body of data to an explaining hypothesis, or from effect to cause, 

“the former classifies, the latter explains”(2.636). 

In papers written after 1891 Peirce widens the concept of inference to include 

methodological processes as well as evidencing processes. The three kinds of reasoning, 

while remaining distinguishable, become closely interlinked. Abduction furnishes the 

reasoner with the hypothesis, while induction is the method of testing and verifying 

(2.776). Peirce perceives the three kinds of reasoning as three stages of inquiry. 

Abduction invents or proposes a hypothesis; it is the initial proposal of a hypothesis on 
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probation to account for the facts. Deduction explicates hypotheses, deducing from them 

the necessary consequences, which may be tested. Induction consists of the process of 

testing hypotheses. Thus, “Abduction is the process of forming an explanatory 

hypothesis. It is the only logical operation which introduces any new ideas; for induction 

does nothing but determine a value, and deduction merely evolves the necessary 

consequences of a pure hypothesis” (5.171). 

The two periods of Peirce’s thinking by no means exhibit two distinct theories of 

abduction. The second period certainly represents Peirce’s mature judgment on the 

matter, but it is the logical consequence of the earlier theory and can only be understood 

clearly in light of the earlier theory. 

2.1.2  The two periods of Peirce’ theory of abduction 

 The earliest phase of Peirce’s thought (from the earliest of his papers, until 1865) 

is very much a Kantian phase based on Kantian logic. One of the most important 

principles of Peirce’s theory of knowledge, which he derived from Kant, is the doctrine 

that every cognition involves an inference. According to Kant there is no cognition until 

the manifold of sense has been reduced to unity. This reduction is accomplished by 

introducing a concept, which is not in and of itself a sensuous intuition. Thus, cognition 

requires some operation upon the manifold to bring it to unity, and Peirce writes in 1861, 

“An operation upon data resulting in cognition is an inference”(p. 21). 

 Peirce’s conception of inference is shown more clearly in his theory of perceptual 

judgment: “Every judgment consists of referring a predicate to a subject. The predicate is 

thought, and the subject is only thought-of. The elements of the predicate are experiences 

or representations of experience. The subject is never experiential but only assumed. 

Every judgment, therefore, being a reference of the experienced or known to the assumed 

or unknown, is an explanation of a phenomenon by a hypothesis, and is in fact an 

inference”(p. 21). 

 Peirce regards all mental processes as inferential. Thus, “inference” includes not 

only deduction and induction but also hypothesis (what he will call later abduction), 

which is “an operation upon data resulting in cognition,” or, “an explanation of a 
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phenomenon by a hypothesis.” However, in his early papers Peirce does not regard these 

as three distinct and irreducible forms of inference. His position is that all forms of 

inference may be reduced to Barbara. He writes in 1860, “It is clear that we draw no 

other inference from a thing’s being a class other than what is directly expressed by 

Barbara namely that whatever is true of an entire class is true of every member of the 

class; hence all other syllogisms may be reduced to Barbara,”(Murphey, op. cit., pp. 21f) 

 Peirce’s philosophy in the 1860’s is based largely upon the notions of classical 

logic, and particularly upon the subject-predicate theory of the proposition. But the 

discovery of the logic of relations in the late 1860’s introduces propositions which are not 

reducible to subject-predicate form. In 1870 Peirce published his first paper on the logic 

of relations and analyzed the syllogisms as a form of logical relations, rather than as 

fundamental formula of all argument (3.66). However, in “Deduction, Induction, 

Hypothesis” (2.619-644), the forms of induction and hypothesis are set up in a manner 

similar to that of 1868. Induction is the inference of the rule (major premise) and the case 

(minor premise) and result (conclusion), while hypothesis is the inference of a case from 

a rule and a result. The following example shows the relationships more clearly: 

 

 Deduction:    Rule – All the beans from this bag are white 

   Case – These beans are from this bag 

∴    Result – These beans are white 

Induction:     Case – These beans are from this bag 

    Result – These beans are white 

∴      Rule – All the beans from this bag are white 

Hypothesis:   Rule – All the beans from this bag are white 

Result – These beans are white 

∴       Case – These beans are from this bag. (2.623) 

 

“Induction is where we generalize from a number of cases of which something is true, 

and infer that the same thing is true of the whole class. As, where we find a certain thing 

to be true of a certain proportion of cases and infer that it is true of the same proportion of 
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the whole class” (2.624). Hypothesis is where we find some surprising fact that would be 

explained by supposing that it is a case of a certain general rule, and thereupon adopt that 

supposition. This type of inference is called “making a hypothesis” (2.623). In this type 

of inference one should keep in mind that, “When we adopt a certain hypothesis, it is not 

alone because it will explain the observed facts, but also because the contrary hypothesis 

would probably lead to results contrary to those observed” (2.628). Peirce seems to hint 

here that hypothesis selection is involved in this kind of inference. 

Explanatory hypotheses may be of widely different kinds and Peirce alludes to at 

least three: (1) the kind, which refers to facts, unobserved when hypotheses are made, but 

which are capable of being observed. For example, upon entering a room I find many 

bags containing different kinds of beans. On a table there is a heap of white beans; I may 

adopt the hypothesis that the heap is taken from a bag that contains white beans only. (2) 

There are hypotheses that are incapable of being observed. This is the case about 

historical facts: “Fossils are found, say, remains like those of fishes, but far in the interior 

of the country. To explain the phenomenon, we suppose the sea once washed over this 

land.” And, “Numberless documents refer to a conqueror called Napoleon Bonaparte. 

Though we have not seen the man, yet we cannot explain what we have seen, namely, all 

these documents and monuments, without supposing that he really existed” (2.625). (3) 

Finally hypotheses refer to entities, which in the present state of knowledge are both 

factually and theoretically unobservable.  For example, “The kinetic theory of gases is an 

illustration of this kind. These are the most important kinds of hypotheses in sciences” 

(Fann, 1970). 

Thus, in the 1870’s, abduction proper, the process of adopting a hypothesis, is 

barely touched upon here. This is due to the fact that Peirce regards ‘inference’ as 

essentially an evidencing process in this period. 

According to the present theory induction and hypothesis are separate forms of 

inference, “The essence of an induction is that it infers from one set of fact to another set 

of similar facts, whereas hypothesis infers from facts of one kind to facts of another” 

(2.642). It is impossible to infer hypothetical conclusions inductively. However, it should 

be noted that even in this early formulation Peirce is not prepared to separate the two 
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forms of inference absolutely: “When we stretch an induction quite beyond the limits of 

our observations, the inference partakes of the nature of hypothesis” (2.640). Induction 

and hypothesis, therefore, may be perceived as occupying opposite ends of the continuum 

of ampliative inference. In the later period Peirce stretches the concept of induction to 

include induction of characters, and abductions will appear to be a quite different kind of 

inference. 

2.1.3  The decade between 1890 and 1900 

 During the years between 1890 and 1900 Peirce’s theory of abduction undergoes a 

fundamental change. Although the notion of abduction as the process of entertaining a 

hypothesis became quite explicit in the early 1890’s, the three kinds of reasoning were 

not as the three stages of inquiry until a decade later. This change does not constitute a 

sudden abandonment of one view in favor of another entirely different view, for the 

change was gradual and the roots of the latter view go further back. 

In the years between 1891 and 1893 Peirce declares the following about the three forms 

of inference: “By hypothetic inference, I mean, as I have explained in other writings, an 

induction from qualities,” and, “By the hypothetic process, a number of reactions called 

for by one occasion get united in a general idea which is called out by the same occasion” 

(6.145). Induction is equated to the process of habit formation, while deduction is the 

process whereby the rule or habit is actualized in action. This is exemplified in the way a 

decapitated frog reasons when you pinch his hind legs: the habit serves as a major 

premise; the pinching is his minor premise, and the conclusion is the act of jumping away 

(6.144, 2.711, 6.286). Peirce’s concern here (in “The Law of Mind”) is merely to show 

that the three forms of inference have analogues in psychological phenomena. The 

treatment here seems little more than a restatement of the point already made in 1878 

(2.643). Induction, hypothesis and analogy, “as far as their ampliative character goes, that 

is, as far as they conclude something not implied in the premises, depend upon one 

principle and involve the same procedure. All are essentially inferences from sampling” 

(6.40). This statement clearly belongs to his early thinking, for according to his later 
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thinking only abductions involve additions to the fact observed. Induction can never 

originate any idea but simply confirms a hypothesis. 

 However, in Peirce’s other writings of the early 1890’s, characteristics of the later 

view of abduction are already explicit. Taking issue with the Positivists in his 1893 

revision of the earlier article, “On the Natural Classification of Arguments,” Peirce 

reiterates his contention that hypothetic inference is a legitimate and independent form of 

inference. A hypothesis “is adopted for some reason, good or bad, and that reason is 

being regarded as leading the hypothesis some plausibility” (2.511 n.1). 

 In a manuscript of notes from a projected but never completed, History of Science, 

written probably in the early 1890’s2 Peirce adopts a new term, “Retroduction,” to 

designate what he used to call hypothesis, and mentions that this is the same as 

Aristotle’s “abduction” (1.65).3 Peirce contends, “Retroduction is the provisional 

adoption of a hypothesis, because every possible consequence of it is capable of 

experimental verification, so that the persevering application of the same method may be 

expected to reveal its disagreement with facts, if it does so disagree” (1.68). The 

conception of abduction is obviously stretched to include the methodological process as 

well as evidencing process. He begins to consider the reasons for adopting a hypothesis. 

 His conception of deduction and induction remains unchanged in the early 1890’s. 

However, by 1898, deduction is clearly regarded as the process of tracing out the 

necessary and probable consequences of a hypothesis. Peirce writes, “Reasoning is of 

three kinds. The first is necessary, but it only professes to give us information concerning 

the matter of our own hypotheses…The second depends upon probabilities…The third 

kind of reasoning tries what il lume naturale…can do. It is really an appeal to instinct” 

(1.630). Induction is not yet treated as the process of testing a hypothesis. The basic idea 

is virtually expressed when Peirce, reflecting the “views of Whevell” in 1893, states that 

                                                 
2 It is dated in the Collected Papers as c.1896, but a more accurate date is provided by Wiener in Studies in 
the Philosophy…. p. 344 n.5. He thinks it should be dated 1891-1892. 
3 In the later period Peirce commonly used the term abduction and sometimes retroduction or presumption. 
He seems to prefer abduction as the best designation. In support of his use of the term he refers to “the 
doubtful theory…that the meaning of the 25th chapter of the 2nd book of the Prior Analytics has been 
completely diverted from Aristotle’s meaning by a single wrong word having been inserted by Appellicon 
where the original was illegible” (8.209). In 1901 he wrote a detailed investigation of this “doubtful theory” 
in “The Logic of Drawing History from Ancient Documents” (7.249). See also 2.776, 2.37n, 5.144. 
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“the progress in science depends upon the observation of the right facts by minds 

furnished with appropriate ideas” (6.604). 

 It is obvious that Peirce is on his way to regarding the three modes of inference as 

the three stages in scientific inquiry. An interesting point to be noted is the fact that up 

until the end of the 19th century, Peirce always listed the three modes of inference 

according to degrees of certainty, namely: deduction, induction, and hypothetic inference. 

After he comes to regard them as the three stages in an inquiry the list becomes: 

abduction, deduction, and induction. 

2.1.4  Abduction, Deduction, and Induction as the three stages of Inquiry 

 The first full statement of Peirce’s later theory of abduction is contained in his 

1901 manuscript, “On the Logic of Drawing History from Ancient Documents.” When 

surprising facts emerge, an explanation is required, and, “The explanation must be such a 

proposition as would lead to the prediction of the observed facts, either as necessary 

consequences or at least as very probable under the circumstances. A hypothesis then, has 

to be adopted which is likely in itself and renders the facts likely. This step of adopting a 

hypothesis as being suggested by the facts is what I call abduction” (7.202). A hypothesis 

adopted in this way could only be adopted on probation and must be tested. Peirce calls 

abduction the “First Stage of Inquiry” (6.469). “The first thing that will be done, as soon 

as a hypothesis has been adopted, will be to trace out its necessary and probable 

experimental consequences. This step is deduction” (7.203). 

 The next step is to test the hypothesis by conducting experiments and comparing 

the predictions drawn from the hypothesis with the actual results of the experiment. 

When we find that prediction after prediction is verified by experiment we begin to 

accord to the hypothesis a standing among scientific results. “This sort of inference it is, 

from experiments testing predictions based on a hypothesis, that is alone properly entitled 

to be called induction” (7.206). 

 The three kinds of inference now become three stages in a scientific inquiry. They 

are intimately connected as a method. Peirce’s view on the relationship between the three 

modes of inference remains essentially the same from this date. He confines his attention 
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mostly to scientific reasoning, and “inference” is mainly treated as a methodological 

process. 

2.1.4.1 The main differences between abduction and Induction 

 According to the early view both abduction and induction are “synthetic” in the 

sense that something not implied in the premise is contained in the conclusion. The 

difference between the two lies in the results of the inferences. Induction is reasoning 

from particulars to a general law: abduction, from effects to cause. The former classifies 

while the latter explains. Under Peirce’s present view any synthetic proposition, whether 

it is a non-observable entity or a generalization (so-called), insofar as it is for the first 

time entertained as possibly true, is a hypothesis arrived at by abduction. He states, “Any 

proposition added to observed facts, tending to make them applicable in any way to other 

circumstances than those under which they were observed may be called a 

hypothesis…By a hypothesis, I mean, not merely a supposition about an observed 

object…but also any other supposed truth from which would result such facts as have 

been observed, so when Van’t Hoff, having remarked that the osmotic pressure of one-

per-cent solutions of a number of chemical substances was inversely proportional to their 

atomic weights, thought that perhaps the same relation would be found to exist between 

the same properties of any other chemical substance” (6.524f.). Under the earlier view, 

this last example of abduction would have been called a “generalization” which would 

only be the result of induction. Under the present view such generalization is suggested 

by abduction and only confirmed by induction. In fact, Peirce now considers “laws” or 

“generalizations” explanatory hypotheses. He writes, “An explanation of a Phenomenon 

as the term is used in the so-called ‘descriptive’ sciences…consists in showing that the 

observed phenomenon follows logically, either necessarily or probably, from Explanatory 

Hypothesis required by sound logic. (Since science begins in observation, followed by 

explanation, which in time leads to classification of phenomena, and classification 

ultimately results in the discovery of law applicable to further explanation).”4 

                                                 
4 Logic Notebook, C. S. Peirce Papers, Houghton Library, Harvard University, p. 294 (1908). 
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 The relationship between abduction and induction is now very clear, “The 

induction adds nothing. At the very most it corrects the value of a ratio or slightly 

modifies a hypothesis in a way, which has already been contemplated as possible. 

Abduction, on the other hand, is merely preparatory. It is the first step of scientific 

reasoning, as induction is the concluding step…They are the opposite poles of reason, the 

one the most ineffective, the other the most effective of arguments. The method of either 

is the very reverse of the other’s…Abduction seeks a theory. Induction seeks for facts” 

(7.217-218). 

2.1.4.2  Abduction as hypothesis construction or Abduction as hypothesis selection? 

 Of what does abduction consist? Is it the logic of constructing a hypothesis, or the 

logic of selecting a hypothesis from among many possible ones? Peirce himself did not 

always keep this distinction in mind and often treated them as the same question. In some 

of his writings he maintains, “Abduction consists in studying facts and devising a theory 

to explain them” (5.145); “Abduction is the process of forming an explanatory 

hypothesis” (5.171); or abduction “consists in examining a mass of facts and in allowing 

these facts to suggest a theory” (8.209). In other writings he regards abduction as “the 

process of choosing a hypothesis” (7.219). To understand the nature of abduction it is 

necessary to investigate the relationship between hypothesis construction and selection. 

 As mentioned before, abduction is concerned with analyzing the reasons for 

proposing a hypothesis. The question arises: Is abduction concerned with the reasons for 

constructing a hypothesis in a certain way, or is it concerned with the reasons for 

preferring one hypothesis over many other possible ones? At the outset these seem to be 

two entirely different questions, but in practice the way one constructs a hypothesis is 

innately connected with the notion of choosing the best hypothesis. The purpose of 

constructing a hypothesis is to explain some facts. But from any given set of facts there 

may be a countless number of possible explanatory hypotheses. “Consider the multitude 

of theories that might have been suggested. A physicist comes across some new 

phenomenon in his laboratory. How does he know but the conjunctions of the planets 

have something to do with it or that it is not perhaps because the dowager empress of 
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China has at that same time a year ago chanced to pronounce some word of mystical 

power or some invisible jinnee may be present” (5.172); or “his daughter having on a 

blue dress, he having dreamed of a white horse the night before, the milkman having 

been late that morning, and so on?” (5.591): In one sense the proposing of a hypothesis is 

no problem at all. But of the trillions of hypotheses that might be made only one is true. 

The problem of constructing a good hypothesis is, thus, analogous to the problem of 

choosing a good hypothesis. The two questions, in practice, merge together. 

 This analysis is implicit in the following definition of abduction: “The first 

starting of a hypothesis and the entertaining of it, whether as a simple interrogation or 

with any degree of confidence, is an inferential step which I propose to call abduction. 

This will include a preference for any one hypothesis over others which would equally 

explain the facts as long as this preference is not based upon any previous knowledge 

bearing upon the truth of the hypotheses, nor on any testing of any of the hypotheses, 

after having admitted them on probation. I call all such inference by the peculiar name, 

abduction…” (6.525). 

 Peirce names three main considerations that should determine our choice of a 

hypothesis (7.220): In the first place, a hypothesis must be such that it will explain the 

surprising facts we have before us; in the second place, it must be capable of being 

subjected to experimental testing. This point is closely connected with the doctrine of 

Pragmatism; and, “In the third place, quite as necessary as consideration as either of those 

I have mentioned, in view of the fact that the true hypothesis is only one out of 

innumerable possible false ones, in view, too, of the enormous expensiveness of 

experimentation in money, time, energy, and thought, is the consideration of economy” 

(7.220).  

 Let us analyze the first consideration. The whole motive of our inquiry is to 

rationalize certain surprising facts by the adoption of an explanatory hypothesis. “The 

hypothesis cannot be admitted, even as a hypothesis, unless it be supposed that it would 

account for the facts or some of them. The form of inference, therefore, is this: 
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 The surprising fact, C, is observed; 

 But if A were true, C would be a matter of course; 

 Hence, there is reason to suspect that A is true. 

 

Thus, A cannot be abductively…conjectured until its entire content is already present in 

the premise, ‘If A were true, C would be a matter of course’” (5.189). This explanation 

shows how the phenomenon would be produced, come about, or result in case the 

hypothesis were true. It may “consist in making the observed facts natural chance results, 

as the kinetical theory of gases explain facts; or it may render the fact necessary” (7.220). 

2.1.5  Peirce’s justification of abduction 

 A possible justification for abduction is that it is the only logical operation that 

introduces any new ideas. Deduction explicates and proves that something must be; 

induction evaluates and shows that something actually is operative. But abduction merely 

suggests that something may be (may be and may be not) (5.171, 6.475, 8.238). 

 There are two aspects to the problem of justification. The formal aspect is 

concerned with the rationale of abduction. The only justification for a hypothesis is that 

it explains the facts (1.89, 1.139, 1.170, 2.776, 6.606). Now to explain a fact is to show 

that it is a necessary or a probable result from another fact, known or supposed. Thus this 

part of the problem is simply a question of reducing any given abductive inference to a 

corresponding deduction. If the latter turns out to be valid, the correctness of the 

abduction is guaranteed. 

The form of abduction: 

 

 The surprising fact, C, is observed; 

 But if A were true, C would be a matter of course; 

 Hence, there is reason to suspect that A is true (5.189). 

 

 

This is valid because the corresponding deduction is valid: 
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 If A were true, C would be a matter of course, 

 A is true; 

 Hence, C is true. 

 

 In answer to the question “how abduction is possible?” Peirce replies, “The 

validity of a presumptive adoption of a hypothesis being such that its consequences are 

capable of being tested by experimentation, and being such that the observed facts would 

follow from it as necessary conclusions, that hypothesis is selected according to a method 

which must ultimately lead to the discovery of the truth” (2.781). And, “Its only 

justification is that its method is the only way in which there can be any hope of attaining 

a rational explanation” (2.777, cf. 5.145, 5.171, 5.603). In other words, Peirce wants to 

say that the validity of abduction depends upon the validity of the whole scientific 

method. 

 The above “justification” seems to be merely a restatement of what abduction is 

instead of providing an independent “validity” for abduction. In fact, it is doubtful 

whether Peirce was ever satisfied with his justification of abduction. As late as 1910, he 

writes, “as for the validity of [abduction], there seems at first to be no room at all for the 

question of what supports it…But there is a decided leaning to the affirmative side and 

the frequency with which that turns out to be an actual fact is to me quite the most 

surprising of all wonders of the universe” (8.238). 

 Elsewhere Peirce tries to account for this “wonder” about the remarkable success 

which abduction has achieved in leading to true theories about nature. Peirce contends 

that the reasonable supposition is that man has come to the investigation of nature with a 

special aptitude for choosing correct theories. This facility is derived from his instinctive 

life through the process of evolution. Thus, the achievements of abduction are due to the 

fact that human intellect is peculiarly adapted to the comprehension of the laws of nature. 

 In their immediacy abductions are often merely guesses; it is quite possible for us 

to guess incorrectly on the first few occasions. But in the long run, “before very many 

hypotheses shall have been tried, intelligent guessing may be expected to lead us to the 
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one which will support all tests, leaving the vast majority of hypotheses unexamined” 

(6.530). This is the foundation upon which abductive inference rests. 

 Peirce’s treatment of the validity of abduction is one of the most unsatisfactory 

features of his theory. The claim that abduction is necessarily valid in itself is essential to 

the whole theory, but he seems unable to provide a clear-cut justification for such a 

claim. The affinity of mind with nature is a hypothesis, which can only be arrived at by 

abduction and thus must not be used to support the validity of abduction. This failure to 

provide an independent justification for abduction remains a difficult problem for 

contemporary philosophers who maintain that there is a logic to discovery. 

2.2 Cifarelli and the role of Abduction 

Cifarelli approaches abduction from a different point of view than Peirce; part of 

his research is concerned with the relationships between abductive approaches and 

problem-solving strategies. The purpose of his work is to clarify the processes by which 

learners construct new knowledge in mathematical problem solving situations, with 

particular focus on instances where the learner’s emerging abductions or hypotheses help 

to facilitate novel solution activity (Cifarelli, 1999). The basic idea is that an abductive 

inference may serve to organize, re-organize, and transform a problem solver’s actions. 

Cifarelli reveals that few studies of mathematical problem solving have specified 

precisely the role of abductive actions in the novel solution activity of solvers, but the 

research on problem posing (Silver, 1994; Brown and Walter, 1990) suggests ways that 

hypotheses play a prominent role in solvers’ novel solution activity. According to Brown 

and Walter (1990), problem posing and problem solving are naturally related in the sense 

that new questions emerge as one is problem solving, that “we need not wait until after 

we have solved a problem to generate new questions; rather, we are logically obligated to 

generate a new question or pose a new problem in order to solve a problem in the first 

place” (p.114). Furthermore, Silver (1994) asserts that this kind of problem posing, 

“problem formulation or re-formulation, occurs within the process of problem solving” 

(p.19). Finally, the cognitive activity of “within-solution posing, in which one 

reformulates a problem as it is being solved” (Silver and Cai, 1996, p.523), may aid the 
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solver to consider “hypothesis-based” questions and situations (Silver and Cai, 1996, 

p.529). According to Cifarelli, this illustrates both the dynamic, yet tentative nature of 

solvers’ solution activity as well as the propensity of the solvers to abduce novel ideas 

about problems while in the process of solving them. 

To this extent Cifarelli has conducted a study with the purpose of analyzing the 

problem posing and solving processes of the learners in mathematical problem solving 

situations, with particular focus on ways that the learner’s emerging abductions or 

hypotheses help to facilitate their novel solution activity; “Their interpretations of a 

particular task may suggest to them additional questions and uncertainties, the 

consideration of which helps them construct goals for purposeful action…In this way, 

problem solving can be viewed as a form of abductive reasoning through which solvers 

mentally reflect upon and contemplate viable strategies to relieve cognitive tension, 

involving no less than their ability to form conceptions of, transform, and elaborate the 

problematic situations they face” (Cifarelli, 1999) 

The following example given by Cifarelli (in “Abduction, Generalization, and 

Abstraction in Mathematical Problem Solving”, 1998) may highlight the core of his 

work: 

 

Marie is a student who was given a set of algebra word problems, 
designed by Yackel (1984) to induce problematic situations.  
Marie had to solve the first problem involving the depths of two lakes, 
and then she was asked to solve eight follow-up tasks, each a variation 
of the original problem. The problems were designed in such a way to 
have a range of similar problem solving situations and hence develop 
ideas about “problem sameness” in the course of her on-going activity. 
The third problem had insufficient information; initially, Marie guided 
by the sameness of the problem tried to solve it in the same way she 
had solved the previous two; very soon she realized that it was not 
possible and that became for her a novel situation. The abduction took 
place at this point, namely Marie needed to find an explanation of her 
failure. 
<<…The same way (she smiles, then displays a facial expression 
suggesting sudden puzzlement) impossible!! It strikes me suddenly that 
there might not be enough information to solve this problem (she re-
reads and reflects on her work) I suspect I’m going to need to know the 
height of one of these things (solver points to both containers in her 
diagram). I don’t know though, so I am going to go over here all the 
way through>> 
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Cifarelli’s analysis of Marie’s process is as follows: 

<<Marie’s anticipation that “the same way” would not work was followed by her 

abduction that the problem did not contain enough information, later refined to the 

hypothesis that she needed more information about the relative heights of the unknowns. 

While the hypothesis contained elements of uncertainty, it helped organize and structure 

her subsequent solution activity, whereupon she explored and tested its plausibility as an 

explanatory device>> (p.7). 

 Cifarelli’s attention is focused on the abductive inference as a tool to enhance the 

search for further strategies when the application of a previous solution did not work. The 

hypothesis of the absence of enough information leads Marie to go through the problem 

again to verify the plausibility of her hypothesis, and then to construct the necessary data 

to solve the problem. Therefore, the researcher is not interested in the “typological aspect” 

of abduction, but in the role such a process plays on the problem-solving activities. 

Another example of Cifarelli’s work is represented by the analysis of some 

episodes from interviews conducted with Jessica, one of the five graduate students in 

Mathematics Education who participated to the project. The five students were enrolled in 

a class, taught by the researcher, “The Use of Technology to Teach Middle and Secondary 

Mathematics.” The students were interviewed on three occasions throughout the course. 

These interviews took the form of problem solving sessions, where students solved a 

variety of algebraic and non-algebraic word problems while “thinking aloud.” 

 The following is an excerpt of an interview with Jessica and the researcher’s 

analysis of her work: 

Problem: Sally, an avid canoeist, decided one day to paddle upstream 6 
miles. In 1 hour, she could travel 2 miles upstream, using her strongest 
stroke. After such strenuous activity, she needed to rest for 1 hour, 
during which time the canoe floated downstream 1 mile. In this manner 
of paddling for 1 hour and resting for 1 hour, she traveled 6 miles 
upstream. How long did it take her to make this trip? 
 
 

Jessica, after having read the problem, commented she had seen a similar problem before 

but had not solved it. 
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Jessica: I have had one like this…and I’m not sure. I 
had a similar one in Dr. L’s class. Upstream-
downstream, airplane flying with the wind behind them. 
Professor L gave us a list of 100 problems. I looked 
them over and did not choose this one. I didn’t do it, but 
I did watch other students do it. So I have not technically 
done this problem. (Appears confident she can do it5). 
(Re-reads the problem; several seconds of reflection) 
Jessica: Okay, distance is 6 miles. Let’s see…total time 
is 2 hours…we have to modify this because upstream 
means you are getting help and downstream means you 
are not…Oh, wait…(reflection) 1 hour she travels 2 
miles up…and she rests 1 hour…so it is not total is 2 
hours. I read the last sentence…and I totally forgot what 
I was supposed to find...the total time. Okay…distance 
equals rate x time, so 1 hour, okay the distance is 2 
miles, time is 1, and rate…(long reflection)…resting 
distance is –1, equals rate…1 um…so (reflection; 
appears frustrated)…I know I have to set an equation 
then…I could…(reflection; facial expressions suggest 
she is puzzled) 

 

Cifarelli’s comment is: Jessica’s comments indicate that even though she had seen others 

solve the problem before, she still had some difficulty solving the same problem. She 

continued to reflect upon the situation and then had an idea to do something different to 

solve the problem: 

 

Jessica: (long reflection, makes motions with her 
hands) okay! So she paddles first, then she rests. She 
goes +2, then –1, she goes +2, -1, she goes +2 and 1, 3, 
and she goes +2 again. So that’s 1,2…9 hours she makes 
the trip. That’s not how they did it in class. 

 

The interviewer questioned Jessica about her reasoning: 

 

Interviewer: Ah, so you were thinking back to how they 
did it? 
Jessica: Well this reminded me of that problem. I was 
trying to do what they did. But when I tried to do it their 

                                                 
5 Comments in boldface describe the non-verbal actions of the solvers as inferred by the researcher. 
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way, and try to get some equation going, it didn’t work. I 
had to try something else. So just apply logic to it, it’s +2, 
-1, +2, -1, then set up an equation (sic) to see if it works. 
 

According to the author, Jessica’s explanation indicates both the provisional aspect of her 

reasoning as well as the belief on her part that her ideas still need to be verified “to see if 

they work”; namely, she abduces an idea of what the problem might be about and then 

initiates the appropriate solution activity to test her abductive hypothesis. 

Cifarelli’s work goes on, asking Jessica to solve an extension of the 

aforementioned problem: 

Suppose after 4 hours on the river, Sally took a lunch 
break for 1 hour, during which time she floated 
downstream. How long did it take her to go the 6 miles up 
the river? 
 
Researcher’s comment: Jessica solved the follow-up task 
routinely. However, her solution surprised her and she 
demonstrated abductive reasoning in “making sense” of her 
solution. 
 
Jessica: Okay…so paddling is +2, resting is –1, so she 
rests another hour for lunch that’s another –1 so first hour 
is +2:-1, +2:-1, and she did lunch, so that’s another –1. So, 
1 there…she rests an hour, and another hour, so those 2 
cancel out going back to 1 hour. So we have +2:-1,+2:-
1,…1,2,…6…11,12 hours to make trip with lunch break. 
 
Jessica: What!? (She appears surprised by her result; 
long period of reflection). Yeah, I guess that 1-hour sets 
you back. (Several seconds of reflection) 
 
Interviewer: What are you thinking? 
 
Jessica: well, I was going to say that it would have been 10 
hours, but I guess…maybe you have to add a whole ‘nother 
cycle? (Reflection) Let’s see. (She annotates her 
diagram). Yeah, you add +2:-1 to make up for that resting 
time, that one –1, to put an extra 2 plus –1 in there, cause 
that just cancels that whole one out there, and gives 3 more 
than 9 total. So I guess it is 12, yeah…Sally’s crazy! 12 
hours. 
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Cifarelli’s comments about Jessica’s solution underline the fact that in solving the 

initial task, her abduction helped her make sense of her realization that the way she has 

seen others solve a similar problem would not work, and upon solving the extension of 

the canoe problem, her abduction helps her make sense of the surprising fact that 

inserting a one-hour rest time into the previous task changed the solution by 3 hours (and 

not a mere 1 hour like she initially expected). 

Finally, Cifarelli’s work seems to uncover a form of novel problem posing that 

has not been addressed in the problem solving literature (like English, 1997: Silver, 1994; 

Silver and Cai, 1996). 

2.3  Magnani and Abduction 

More than a hundred years ago, the great American philosopher Charles 
Sanders Peirce coined the term “abduction” to refer to inference that 
involves the generation and evaluation of explanatory hypotheses. The 
study of abductive inference was slow to develop, as logicians 
concentrated on deductive logic and on inductive logic based on formal 
calculi such as probability theory. In recent decades, however, there has 
been renewed interest in abductive inference from two primary sources. 
Philosophers of science have recognized the importance of abduction in the 
discovery and evaluation theories, and researchers in artificial intelligence 
have realized that abduction is a key part of medical diagnosis and other 
tasks that require finding explanations. Psychologists have been slow to 
adopt the terms “abduction” and “abductive inference” but have been 
showing increasing interest in causal and explanatory reasoning. 
This abduction is now a key topic in cognitive science, the interdisciplinary 
study of mind and intelligence. Lorenzo Magnani’s new book contributes 
to this research in several valuable ways. First, it nicely ties together the 
concerns of philosophers of science and AI researchers, showing, for 
example, the connections between scientific thinking and medical expert 
systems. Second, it lays out a useful general framework for discussion of 
various kinds of abduction. Third, it develops important ideas about 
aspects of abductive reasoning that have been relatively neglected in 
cognitive science, including the visual and temporal representations and 
the role of abduction in the withdrawal of hypotheses. The author has 
provided a fine contribution to the renaissance of research on explanatory 
reasoning. (Paul Thagard) 

 

The book starts with the words written by Paul Thagard to underline the important 

contribution offered by Lorenzo Magnani to the wide scenario of abduction. His attempt 

is to explore abduction, meant as inference to explanatory hypotheses, and the aim is to 



 25

integrate philosophical, cognitive, and computational issues, while also discussing some 

cases of reasoning in science and medicine, in order to illustrate the problem-solving 

process and to propose a unified epistemological model of scientific discovery, diagnostic 

reasoning, and other kinds of creative reasoning. 

 The study of diagnostic, visual, spatial, analogical and temporal reasoning has 

demonstrated that there are many ways of performing intelligent and creative reasoning 

that cannot be described with only the help of classical logic. However, non-standard 

logic has shown how we can provide rigorous formal models of many kinds of abductive 

reasoning such as the ones involved in defeasible and uncertain inferences. To this extent 

Magnani starts introducing two kinds of abduction, theoretical and manipulative, in order 

to provide an integrated framework to explain some of the main aspects of both creative 

and model-based reasoning effects engendered by the practice of science. 

2.3.1  Theoretical Abduction 

Theoretical abduction is the process of inferring certain facts and/or laws and 

hypotheses that render some sentences plausible, that explain or discover some 

(eventually new) phenomenon or observation; it is the process of reasoning in which 

explanatory hypotheses are formed and evaluated. For instance, if we see a broken 

horizontal glass on the floor6 we might explain this fact by postulating the effect of wind 

shortly before: this is not certainly a deductive consequence of the glass being broken (a 

cat may well have been responsible for it). 

There are two main epistemological meanings of the word abduction (Magnani, 

1988, 1991): (1) abduction that only generates “plausible” hypotheses (creative or 

selective) and (2) abduction considered as inference to the best explanation, which also 

evaluates hypotheses. Creative abduction deals with the whole field of the growth of 

scientific knowledge (Blois, 1984). 

Selective abduction tends to produce hypotheses for further examination that have some 

chance of turning out to be the best explanation. 

                                                 
6 This event constitutes in its turn an anomaly that needs to be solved/explained. 
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We can consider the following example, dealing with diagnostic reasoning and 

illustrated in syllogistic terms (see also Lycan, 1988): 

1. If a patient is affected by a pneumonia, his/her level of white blood cells 

increases 

2. John is affected by pneumonia 

3. John’s level of white blood cells increases 

(This syllogism is known as Barbara) 

By deduction we can infer (3) from (1) and (2). Two other syllogisms can be obtained 

from Barbara if we exchange the conclusion (or Result, in Peircean terms) with either the 

major premise (the Rule) or the minor premise (the Case): by induction we can go from a 

finite set of facts, like (2) and (3), to a universally quantified generalization - also called 

categorical inductive generalization. Like the piece of hematologic knowledge 

represented by (1). Starting from knowing – selecting – (1) and “observing” (3) we can 

infer (2) by performing a selective abduction. 

Thus, selective abduction is the making of a preliminary guess that introduces a 

set of plausible diagnostic hypotheses, followed by deduction to explore their 

consequences, and by induction to test them with available patient data; (1) to increase 

the likelihood of a hypothesis by noting evidence explained by that one, rather than by 

competing hypotheses, or (2) to refute all but one. 

Inside the theoretical abduction, Magnani defines the Visual abduction, bearing in 

mind Peirce’s assertion, namely, that all thinking is in signs, and signs can be icons, 

indices, or symbols. Moreover, all inference is a form of sign activity, where the word 

sign includes “feeling, image, conception, and other representation” (CP. 5.283), and in 

Kantian language, all synthetic forms of cognition. Therefore, Visual abduction, a special 

form of non-verbal abduction, occurs when hypotheses are instantly derived from a 

stored series of previously similar experiences. It covers a mental procedure that tapers 

into a non-inferential one, and falls into the category called “perception.” Philosophically, 

perception is viewed by Peirce as a fast and uncontrolled knowledge-production 

procedure. Perception is in fact a vehicle for the instantaneous retrieval of knowledge that 

has been previously structured in our minds through inferential processes. 
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Peirce remarks: “Abductive inference shades into perceptual judgment without 

any sharp line of demarcation between them” (Peirce, 1955c, p.304): By perception, 

knowledge constructions are so instantly reorganized that they become habitual and 

diffuse and do not need any further testing: “[…] a fully accepted, simple, and interesting 

inference tends to obliterate all recognition of the uninteresting and complex premises 

from which it was derived” (CP 7.37). Many visual stimuli – that can be considered the 

“premises” of the involved abduction – are ambiguous, yet people are adept at imposing 

order on them: “We readily form such hypotheses as that an obscurely seen face belongs 

to a friend of ours, because we can thereby explain what has been observed” (Thagard, 

1988, p. 53). This kind of image-based hypothesis formation can be considered as a form 

of visual (or iconic) abduction. 

Peirce gives another interesting example of model-based abduction related to 

sense activity: “A man can distinguish different textures of cloth by feeling: but not 

immediately, for he requires to move fingers over the cloth, which shows that he is 

obliged to compare sensations of one instant with those of another”(CP, 5.221). This 

surely suggests that abductive movements also have interesting extra-theoretical 

characters and that there is a role in abductive reasoning for various kinds of 

manipulations of external objects. 

In conclusion, for Peirce all knowing is inferring and inferring is not 

instantaneous, it happens in a process that needs an activity of comparisons involving 

many kinds of models over a more-or-less considerable lapse of time. This is not in 

contradiction with the fact that for Peirce the inferential and abductive character of 

creativity is based on the instinct (the mind is “in tune with the nature”) but does not have 

anything to do with irrationality and blind guessing. 

Human beings and animals have evolved in such a way that now they are able to 

recognize habitual and recurrent events and to “emotionally” deal with them, like in cases 

of fear, that appears to be a quick explanation that some events are dangerous. During the 

evolution such abductive types of recognition and explanation settled in their nervous 

systems: we can abduce “fear” as a reaction to a possible external danger, but also when 
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confronting a different type of evidence, like in the case of “reading a thriller”(Oatley, 

1996). 

In all these examples Peirce is referring to a kind of hypothetical activity that is 

inferential but not verbal, where “models” of feeling, seeing, hearing, etc., are efficacious 

when used to build both habitual abductions of everyday reasoning and creative 

abductions of intellectual and scientific life. We have to remember that visual and 

analogical reasoning is productive in scientific concept formation too; scientific concepts 

do not pop out of our heads, but are elaborated in a problem-solving process that involves 

the application of various procedures: this process is a reasoned process. 

As we have seen, the general objective is to consider how the use of visual mental 

imagery in thinking may be relevant to hypothesis generation and scientific discovery. In 

this research area the term “image” refers to an internal representation used by humans to 

retrieve information from memory. Many psychological and physiological studies have 

been carried out to describe the multiple functions of mental imagery processes: there 

exists a visual memory (Paivio, 1975) that is superior in recall; humans typically use 

mental imagery for spatial reasoning (Farah, 1988); images can be rebuilt in creative 

ways (Finke, and Slayton, 1988); they preserve the spatial relationships, relative sizes, 

and relative distances of real physical objects (Kosslyn, 1980); for a more complete list, 

see Tye (1991). 

Kosslyn introduces visual cognition as follows: 

Many people report that they often think by visualizing objects and 
events […] we will explore the nature of visual cognition, which is the 
use of visual mental imagery in thinking. Visual mental imagery is 
accompanied by the experience of seeing, even though the object or 
event is not actually being viewed. To get an idea of what we mean by 
visual mental imagery, try to answer the following questions: […] How 
many windows are there in your living room? If an uppercase version 
of the letter n were rotated 900 clockwise, would it be another letter? 
(Kosslyn and Koenig, 1992, p.128) 

 
We can build visual images on the basis of visual memories but we can also use 

the recalled visual image to form a new image, one we have never actually seen. 

Certainly, imagery is used in everyday life, as illustrated by the previous simple answers, 

nevertheless imagery has to be considered as a major medium of thought, as a mechanism 



 29

for thinking relevant to hypothesis generation. Some hypotheses naturally take a pictorial 

form: the hypothesis that the earth has a molten core might be better represented by a 

picture that shows solid material surrounding the core.  

There has been little research on the possibility of visual imagery representations 

of hypotheses, despite abundant reports (e.g., Einstein and Faraday) that imaging is 

crucial to scientific discovery, but also in creative literary and artistic realizations 

(Koestler, 1964; Shepard, 1988, 1990). Einstein described having imaged the 

consequences of traveling at the speed of light, which led him to the discovery of the 

theory of special relativity. Faraday claimed to have visualized lines of force that 

emanated from electrical and magnetic sources, leading to the modern conception of 

electromagnetic fields. 

Moreover, it is well-known that the German chemist Kekulé, used spontaneous 

imagery to discover the structure of benzene; Watson and Crick have reported the use of 

mental imagery in the interpretation of diffraction data and in the determination of the 

structure of the DNA molecule (Holton, 1972; Miller, 1984, 1989; Magnani, Civita, and 

Previde Massara, 1994; Nersessian, 1995a; Shepard, 1988, 1990; Thagard, Gochfeld, and 

Hardy, 1992; Tweney, 1989). 

Thus, after illustrating the computational imagery representation scheme proposed 

by Glasgow and Papadias (1992), together with certain cognitive results, Magnani will 

explore whether a kind of hybrid imagery/linguistic representation architecture can be 

improved and used to model image-based hypothesis generation; i.e. to delineate the first 

cognitive and computational features of what he call visual abduction.  

The central theme of the recent imagery debate in cognitive science concerns the 

problem of representation. How can we represent images? Are mental images represented 

depictively in a picture, or like sentences of descriptions in a syntactic language? 

According to Kosslyn’s depictionist or pictorialist view (Kosslyn, 1983), mental images 

are quasi-pictures represented in a specific medium called the visual buffer in the mind. 

Kosslyn’s model of mental imagery proposes three classes of processes that manage 

images in the visual buffer: the generation process forms an image exploiting visual 

information stored in long-term memory, the transformation process (for example, 
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rotation, translation, reduction in size, etc.,) modifies the depictive image or views it from 

different perspectives, and the inspection process explores patterns of cells to retrieve 

information such as shape and spatial configuration. According to Pylyshyn’s 

descriptionist view (1981, 1984) mental imagery can be explained by the tacit knowledge 

used by humans when they simulate events rather than by a pictorialist view related to the 

presence of a distinctive mental image processor. 

According to Kosslyn’s cognitive model, the knowledge representation scheme of 

mental imagery is composed of two different levels of reasoning, visual and spatial, the 

former concerned with what an image looks like, and the latter depending on where an 

object is located relative to other objects. The different representations of these methods 

of reasoning exist at the level of working-memory and are generated from a descriptive 

representation of an image stored in long-term memory in a hierarchical organization. 

Information is accessed from long-term memory by means of standard retrieval, 

procedural attachment and inheritance techniques. 

According to Magnani, we can consider spatial representations as descriptive. 

Thus, they are expressed by propositions containing predicates such as spatial 

relationships and arguments as imaginable objects. 

The spatial representation does not add information that cannot be expressed by 

propositions. Notwithstanding this, the spatial representation is not computationally 

equivalent to a descriptive one. In several imagery-related tasks (e.g. inspecting) spatial 

representation may reduce the computational complexity of the solution: the symbolic 

array adds more constraints to the search. As the spatial representations are depictive, and 

denote the important spatial relations among parts of the image, they are useful in the 

development of problem-solving devices related to the inspection and transformation of 

images. 

The use of imagery in scientific discovery illustrates a mechanism of thinking 

relevant to hypothesis generation. Imagery also involves the simulation of image 

transformations in order to anticipate the consequences of an action or event; constructing 

novel images through operations such as compose, superimpose, and put, allows us to 

detect information not previously observed. 
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Having illustrated many issues concerning the phenomenon of imagery, which is 

commonly and consciously experienced as the ability to form, transform and inspect an 

image-like representation of a scene, and having indicated that such representations play 

a role in problem-solving strategies involving visual or spatial properties of an image, 

Magnani considers, from a computational philosophy perspective, a visual abductive 

problem-solving strategy. 

Although there is considerable agreement concerning the existence of a high-level 

visual and spatial medium of thought as a mechanism relevant to abductive (selective and 

creative) hypothesis generation, the underlying cognitive processes involved are still not 

well understood. Notwithstanding this, Magnani will attempt to work around this gap in 

our understanding: although describing a model able to “imitate” the real ways the human 

brain works when it makes visual abductions would be best, his primary concern is its 

expressiveness and inferential adequacy, rather than its explanatory and predictive power 

as regards psychological research. 

According to Magnani we can face an initial (eventually) observed image in 

which we recognize a problem to solve. For example, given a visual or imagery datum, 

we may have: (1) to explain the absence of an object; (2) explain why an object is in a 

particular position; (3) explain how an object can achieve a given task moving itself 

and/or interacting with the remaining objects in the scene/image; (4) to show how we can 

recognize an object as having significance (for instance the recognition of a stone as a 

toll) (Shelley, 1996). 

How can “visual” reasoning perform these explanations? To answer this question 

it is necessary to show how visual abduction may be relevant to hypothesis generation, 

that is, how an image-based explanation is able to solve the problem given in the initial 

image. 

Faced with the initial image, in which we have previously recognized a problem 

to solve, as stated above, we have to work out an imagery hypothesis that can explain the 
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problem-data.7 Thus, the formed image acquires a hypothetical status in the inferential 

abductive process at hand. 

1) We have to select from long-term memory a visual (imagery) description that is able to 

explain the anomaly that needs to be solved; 2) we have to justify the presence/absence of 

a given object in a scene selecting a suitable imagery explanatory hypothesis; 3) for 

instance we have to visually solve the well-known monkey-banana problem: every 

formed visual representation of the effect of a sequence of actions the monkey can 

perform may be considered as a hypothesis generation. Such a hypothesis, if successful, 

is viewed as the one selected that gives a solution to the problem; 4) a slightly differently 

selected version of the initial image can perform the task of giving sense to an object. 

The generation of a “new” imagery hypothesis can be considered the result of the 

creative abductive inference previously described; in this respect we can consider how 

the imagery representations of new hypotheses lead to scientific discovery. The selection 

of an imagery hypothesis from a set of pre-enumerated imagery hypotheses, stored in 

long-term memory, also involves abductive steps, but its creativity is much weaker: this 

type of visual abduction can be called selective. 

All we can expect of visual abduction is that it tends to produce imagery 

hypotheses that have some chances of turning out to be the best explanation. Visual 

abduction will always produce hypotheses that give at least a partial explanation, and 

therefore have a small amount of initial plausibility. In this respect abduction is more 

effective than the blind generation of hypotheses. 

2.3.2  Manipulative Abduction 

Manipulative abduction happens when we are thinking through doing and not 

only, in a pragmatic sense, about doing. So the idea of manipulative abduction goes 

beyond the well-known role of experiments as capable of forming new scientific laws by 

means of the results (nature’s answers to the investigator’s question) they present, or of 

                                                 
7 When discussing some problems related to the abductive reasoning, Bayesian networks, perception, and 
vision, also Poole (2000) underlines that in vision we can think of a scene causing the image: “the scene 
produces the image, but the problem of vision is, given an image, to determine what is in the scene”, that it 
is an abductive task. 
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merely playing a predictive role (in confirmation and in falsification). Manipulative 

abduction refers to an extra-theoretical behavior that aims at creating communicable 

accounts of new experiences to integrate them into previously existing systems of 

experimental and linguistic (theoretical) practices. 

The existence of this kind of extra-theoretical cognitive behavior is also testified 

by the many everyday situations in which humans are perfectly capable of performing 

very efficacious (and habitual) tasks without the immediate possibility of realizing their 

conceptual explanation. In some cases the conceptual account for doing these things is at 

one point present in the memory, but has now deteriorated, and it is necessary to 

reproduce it. In other cases the account has to be constructed for the first time, like in 

creative settings of manipulative abduction in science. Hutchins (1995) illustrates the 

case of a navigation instructor that for 3 years performed an automatized task involving a 

complicated set of plotting manipulations and procedures. 

The insight concerning the conceptual relationships between relative and 

geographic motion came to him suddenly, “as lay in his bunk one night.” This example 

explains that many forms of learning can be represented as the result of the capability of 

giving conceptual and theoretical details to already automatized manipulative executions. 

The instructor does not discover anything new from the point of view of the objective 

knowledge about the involved skill; however, we can say that his conceptual awareness is 

new from the local perspective of his individuality. 

In this kind of action-based abduction the suggested hypotheses are inherently 

ambiguous until articulated into configurations of real or imagined entities (images, 

models or concrete apparatuses and instruments). In these cases only by experimenting 

we can discriminate between possibilities: they are articulated behaviorally and 

concretely by manipulations and then, increasingly, by words and pictures. 

Some common features of these tacit templates that enable us to manipulate things 

and experiments in science are related to 1) Sensibility to the aspects of the phenomenon, 

which can be regarded as curious or anomalous; 2) Preliminary sensibility to the 

dynamical character of the phenomenon, and not to entities and their properties, one 

common aim of manipulations is to practically reorder the dynamic sequence of events in 
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a static spatial sequence that should promote a subsequent bird’s-eye-view (narrative or 

visual-diagrammatic); 3) Referral to experimental manipulations that exploit artificial 

apparatus to free new possibly stable and repeatable sources of information about hidden 

knowledge and constraints; 4) Various contingent ways of epistemic acting: looking from 

different perspectives, checking the different information available; comparing 

subsequent events, choosing, discarding, imaging further manipulations, re-ordering and 

changing relationships in the world by implicitly evaluating the usefulness of a new 

order. 

Manipulative abduction represents a kind of redistribution of the epistemic and 

cognitive effort to manage objects and information that cannot be immediately 

represented or found internally. 

The interplay between manipulative and theoretical abduction consists of a 

superimposition of internal and external, where the elements of the external structures 

gain new meanings and relationships to one another, thanks to the constructive 

explanatory theoretical activity (for instance Faraday’s new meanings in terms of curves 

and lines of force). 

In this light, Powers (1973) studied behavior, considering it as a control of 

perception and not only as controlled by perception. Flach and Warren (1995) used the 

term “active psychophysics” to illustrate that “the link between perception and action 

[…] must be viewed as a dynamic coupling in which stimulation will be determined as a 

result of subject actions. It is not simply a two-way street, but a circle” (p.202). Kirsh 

(1995) describes situations (e.g., grocery bagging, salad preparation) in which people use 

action to simplify choice, perception, and reduce demands for internal computation 

through the exploitation of spatial structuring. 

We know that theoretical abduction certainly illustrates much of what is important 

in abductive reasoning, especially the objective of selecting and creating a set of 

hypotheses (diagnoses, causes, hypotheses) that are able to dispense good (preferred) 

explanations of data (observations), but fail to account for many cases of explanations 

occurring in science or in everyday reasoning when the exploitation of the environment is 

crucial. The concept of manipulative abduction is devoted to capturing the role of action 
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in many interesting situations: action provides otherwise unavailable information that 

enables the agent to solve problems by starting and performing a suitable abductive 

process of generation or selection of hypotheses. 

From the point of view of everyday situations manipulative abductive reasoning 

exhibits very interesting features: 1) action elaborates a simplification of the reasoning 

task and a redistribution of effort across time (Hutchins, 1995), when we “need to 

manipulate concrete things in order to understand structures which are otherwise too 

abstract” (Piaget, 1974), or when we are in the presence of redundant and unmanageable 

information”; 2) action can be useful in the presence of incomplete or inconsistent 

information – not only from the “perceptual” point of view – or of a diminished capacity 

to act upon the world: it is used to get more data to restore coherence and to improve 

deficient knowledge; 3) action as a control of sense data illustrates how we can change 

the position our body (and/or of the external objects) and how to exploit various kinds of 

prostheses (Galileo’s telescope, technological instruments and interfaces) to get various 

new kinds of stimulation: action provides some tactile and visual information (e.g., in 

surgery), otherwise unavailable; 4) action enables us to build external artifactual models 

of task mechanisms instead of the corresponding internal ones, that are adequate to adapt 

the environment to an agent’s needs. 

Artificial Intelligence research has developed many computational tools for 

describing the representation and processing of information. Cognitive psychologists 

have found these tools valuable for developing theories about human thinking and for 

their experimental research. 

To escape relativism, epistemology is usually considered as the normative theory 

of objective knowledge, and thus does not need to take into account what psychology 

determines as the nature of individuals’ belief systems. Logic and epistemology are 

concerned with how people ought to reason, whereas psychology is supposed to describe 

how people actually think. 

Empirical studies of cognitive psychology are descriptive: they are dedicated to 

the investigation of mental processes and are concerned with normative issues only in 

order to characterize people’s behavior relative to assumed norms. AI, when examined as 
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cognitive modeling, is normally descriptive: only when it is concerned with improving on 

people’s performances does it become involved with what is normative. 

Epistemology, AI and cognitive psychology can be used together to develop models that 

explain how humans think (Thagard, 1988, 1996). 

If abduction is considered as inference to the best explanation, abduction is 

epistemologically classified not only as a mechanism for selection (or for discovery), but 

also for justification. 

2.4 Abduction and Mathematics 

 Mathematicians and mathematics educators have recognized the influence of 

abductive processes in mathematical thinking, although under different names. Lakatos 

(1976) acknowledged the nonlinearity of inferential reasoning, stating that, “discovery 

does not go up or down, but it follows a zigzag path; prodded by counterexamples, it 

moves from the naïve conjecture to the premise and then turns back again to delete the 

naïve conjecture and replace it with a theorem.” 

 Mason (1995) points out that in trying to avoid difficulties, “the curriculum turns 

everything into behavior, avoids awareness, assumes deduction, tolerates induction, and 

ignores abduction.” 

Accounts of mathematics learning have long acknowledged the importance of 

autonomous cognitive activity, with particular emphasis on the learners’ abilities to 

initiate and sustain productive patterns of reasoning in problem-solving situations. 

Nevertheless, most accounts of problem-solving performance have been explained in 

terms of inductive and deductive reasoning, containing little explanation of the novel 

actions solvers often perform prior to introducing formal algorithmic procedures into 

their actions. For example, cognitive models of problem solving seldom address the 

solver’s idiosyncratic activity, such as the generation of novel hypotheses, intuitions, and 

conjectures, even though these processes are seen as crucial tools through which 

mathematicians ply their craft (Anderson, 1995; Burton, 1984; Mason, 1995). 
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2.5 Proofs and Proving 

Much has been said and is still being said about proof, and amongst the questions 

that have arisen is: What is a mathematical proof? What does prove mean in 

mathematics? How do we teach a mathematical proof? What is the role of proof in 

mathematics? 

Throughout the 20th century mathematicians and mathematics educators shared 

many differing positions about this issue. The tenet of proof has been analyzed from 

different points of view (pedagogical, historical, and cognitive), for this reason we must 

differentiate between proof as product, proof as process and the teaching of proof. 

2.5.1   Proof as product 

The first half of the 20th century was characterized by the search for precision and 

rigor (even though formalism has very ancient descendants: from the Greeks with 

Aristotle and Plato to Leibniz (1646-1716) and Frege (1848-1925) to arrive at Hilbert 

(1862-1943)). One very famous instance was a group of French mathematicians who 

wrote under the name of Bourbaki: 

 

The mathematics method teaches one…to find the common ideas 
buried under the external apparatus of detail appropriate to each of the 
theories considered, to single out these ideas and to exhibit them.  
                                                                      (Bourbaki, 1971, p.26) 
 

Such an approach led to the 60’s where a great emphasis was given to formal 

proof, considered the most important characteristic of modern mathematics, indeed 

impressive work was done during the first 50 years of the century in clarifying the very 

foundations of mathematics, work that demonstrated the enormous power of formal 

systems constructed step by step from a base of definitions, axioms, and rules of 

inference. 

 Among the results of such a work we can find the birth of three main schools of 

thought going under the names of Logicism, Formalism, and Intuitionism. 

Gottlob Frege, the German philosopher, logician and mathematician (1848-1925) began 

the school of Logicism in about 1884. Bertrand Russell rediscovered the school about 
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eighteen years later. Other early logicists were Peano and Russell’s co-author of Principia 

Mathematica, A. N. Whitehead. The purpose of Logicism is to show that classical 

mathematics is part of logic, and to this extent Russell and Whitehead created the 

Principia Mathematica, which was published in 1910. The Principia may be considered 

as a formal set theory: although the formalization was not entirely complete, Russell and 

Whitehead thought that it was and planned to use it to show that mathematics can be 

reduced to logic. They showed that all classical mathematics, known in their time, could 

be derived from set theory and hence from the axioms of the Principia Mathematica. 

Consequently, what remained to be done was to show that all the axioms of Principia 

Mathematica belong to logic. Snapper (1979) states that in order to understand Logicism, 

it is important to clearly understand what the logicists mean by “logic”. The reason is 

that, whatever they meant, they certainly meant more than classical logic. <<Nowadays, 

one can define classical logic as consisting of all those theorems which can be proven in 

first order languages without the use of nonlogical axioms. We are thus restricting 

ourselves to first order logic and the use of the deduction rules and logical axioms of such 

logic. An example of such a theorem is the law of the excluded middle which says that, if 

p is a proposition, then either p or its negation ¬ p is true; in other words, the proposition 

¬∨p  p is always true where ∨  is the usual symbol for the inclusive “or”>> (Snapper, 

p.1). According to the author, the logicists’ definition was more extensive: they had a 

general concept as to when a proposition should be called a “logical proposition.” They 

stated: a logical proposition is a proposition that has complete generality and is true in 

virtue of its form rather than its content (in Snapper, 1979). Here the word “proposition” 

is used as synonymous with “theorem.” For example, the above law of the excluded 

middle “ ¬∨p  p” is a logical proposition. Namely, this law does not hold because of any 

special content of the proposition p; it does not matter whether p is a proposition of 

mathematics or physics or what else. The logicists would answer that the proposition 

holds “because of its form,” where by form they mean “syntactical form,” the form of 

“ ¬∨p  p being given by the two connectives of everyday speech, the inclusive “or” and 

the negation “not” (denoted by ∨  and ¬, respectively). The school failed by about 20% 

in its effort to give mathematics a firm foundation, since, for example, at least two out of 
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the nine axioms of the formal set theory developed by Zermelo and Fraenkel are not 

logical propositions in the sense of Logicism; nevertheless, Logicism has been of the 

greatest importance for the development of modern mathematical logic. In fact, it was 

Logicism that launched mathematical logic in a serious way. The two quantifiers, the “for 

all” quantifier ∀ and the “there exists” quantifier ∃ were introduced into logic by Frege 

(1970), and the influence of Principia Mathematica on the development of mathematical 

logic is now history. 

 The philosophy of Logicism is (it is sometimes said), based on the philosophical 

school called “realism.” In medieval philosophy “realism” stands for the Platonic 

doctrine that states, abstract entities have an existence independent of the human mind. 

Mathematics is, of course, full of abstract entities such as numbers, functions, sets, etc., 

and according to Plato all such entities exist outside our mind; the mind can discover 

them but does not create them. This doctrine has the advantage that one can accept such a 

concept as “set” without worrying about how the mind can construct a set. According to 

realism, sets are there to be discovered, not to be constructed, and the same holds true for 

all other abstract entities. Therefore, realism allows us to accept many more abstract 

entities in mathematics than a philosophy that limits us to accept only those entities 

constructed by the human mind. Russell was a realist and accepted the abstract entities 

that occur in classical mathematics without questioning whether our own minds can 

construct them. 

The school of Intuitionism came into being circa 1908, founded by the Dutch 

mathematician, L. E. J. Brouwer (1881-1966). Logicists simply wanted to show that 

classical mathematics was a part of logic; intuitionists, on the contrary, felt that there 

were many things wrong with classical mathematics. By 1908, several paradoxes had 

arisen in relation to the set theory created by Cantor, started around 1870. The logicists 

considered these paradoxes as common errors, caused by erring mathematicians and not 

by a faulty mathematics. The intuitionists, on the other hand, considered these paradoxes 

as clear indications that classical mathematics itself was far from perfect; from their point 

of view, mathematics had to be rebuilt from the bottom on up, and that meant starting 

from the explanation of what the natural numbers 1,2,3…are. According to Intuitionism, 
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all human beings have a primordial intuition for the natural numbers within them; this 

means that we have an immediate certainty of what is meant by the number 1, and also 

that the mental process used for the number one can be repeated. Such a repetition allows 

us to conceptualize the number 2, and so on. In this way human beings can construct any 

finite initial segment 1,2…n for any natural number n. According to Brouwer, the 

possibility to construct one natural number after the other is given by human beings’ 

awareness of time (“after” refers to time); and his idea comes from the philosopher 

Immanuel Kant (1724-1804) who already believed in the human beings’ immediate 

awareness of time, and who called such immediate awareness, “intuition,” and this is 

where the name Intuitionism (given by Brouwer) comes from.  

The first evident difference between Intuitionism and Logicism is that the 

intuitionist construction of natural numbers allows one to construct arbitrarily long finite 

initial segments 1,2…n. It is not possible to construct the whole closed set of all the 

natural numbers, as has been considered by classical mathematics. Furthermore, the 

construction of the natural number is both inductive and effective. Inductive, because if 

we want to construct the number 3, we have to go through all the mental steps have first 

constructing the 1, and then the 2, and finally the 3: we cannot simply grab the number 3 

out of the blue. It is effective, in the sense that, once the construction of a natural number 

has been finished, that natural number has been constructed in its entirety. 

With regards to the intuitionistic definition of mathematics, it should be defined as 

a mental activity and not as a set of theorems; therefore, “Mathematics is the mental 

activity which consists in carrying out constructs one after the other” (Snapper, p.3); 

where a construct is a mental construction which is inductive and effective (in the sense 

defined above), and Intuitionism maintains that human beings are able to recognize 

whether a given mental construction contains these two properties. A major consequence 

of the intuitionistic definition of mathematics is that it is effective or “constructive”; for 

instance, “if a real number r occurs in an intuitionistic proof or theorem, it never occurs 

there merely on grounds of an existence proof. It occurs there because it has been 

constructed from top to bottom. […] In short, all intuitionistic proofs, theorems, 

definitions, etc., are entirely constructive” (Snapper, p.3). 
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Another consequence of the intuitionistic definition of mathematics is that 

mathematics cannot be distilled to any other science such as, for example, logic, because 

such a definition comprises too many mental processes for this kind of simplification. An 

Intuitionist’s attitude toward logic is exactly the opposite of the logicists’: the valid part 

of classical logic is part of mathematics; and any law of classical logic, which is not 

composed of constructs, is for the intuitionists a meaningless combination of words. For 

the intuitionists, the classical law of the excluded middle8 turns out to be a meaningless 

combination of words. Intuitionists have developed intuitionistic arithmetic algebra, 

analysis, set theory, etc. However they do not achieve a reconstruction of all classical 

mathematics, but this does not bother the intuitionists, since their purpose is not to justify 

all classical mathematics, but to give a valid definition of mathematics and then to “wait 

and see” what mathematics emerges. Whatever classical mathematics cannot be done in 

an intuitionistically simple manner is not mathematics for the intuitionist. Therefore, 

another fundamental difference between Logicism and Intuitionism is that the former 

wants to justify all of classical mathematics. 

The Intuitionistic school represents another crisis in mathematics in the sense that 

its failure consists in the inability to make intuitionism acceptable to at least the majority 

of mathematicians. The mathematical community has almost universally rejected 

intuitionism for three main reasons; the first is that classical mathematicians refuse to 

reject many theorems because they are meaningless combinations of words for the 

intuitionists. A second reason comes from theorems that can be proven both classically 

and intuitionistically. It often happens that the classical proof of such a theorem is short, 

elegant, and clever, but not constructive. The intuitionists will of course reject such a 

proof and replace it with their own constructive proof of the same theorem. However, this 

constructive proof frequently turns out to be about ten times as long as the classical proof 

and often seems, at least to the classical mathematician, to have lost all of its elegance. 

An example of this is the fundamental theorem of algebra, which in classical mathematics 

is proved in about half a page, but takes about ten pages of proof in intuitionistic 

                                                 
8 If p is a proposition, then either p or its negation ¬ p is true. In other words, the proposition p ∨ ¬ p is 
always true. 
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mathematics. Finally, there are theorems that hold true in intuitionism but are false in 

classical mathematics. An example is the intuitionistic theorem, which says that every 

real-valued function, which is defined for all real numbers, is continuous. This theorem is 

not as strange as it sounds since it depends on the intuitionistic concept of a function: A 

real-valued function f is defined in intuitionism for all real numbers only if, for every real 

number r whose intuitionistic construction has been completed, the real number f(r) can 

be constructed. Any obviously discontinuous function a classical mathematician may 

mention does not satisfy this constructive criterion. Even so, theorems such as this one 

seem so far out to classical mathematicians that they reject any mathematics that accepts 

them (Snapper, p.4). 

Finally, intuitionism is related to the philosophy called “conceptualism,” just as 

Logicism is related to Realism. Conceptualism maintains that abstract entities exist only 

insofar as they are constructed by the human mind. Therefore, it can be determined that 

the abstract entities that occur in mathematics, whether sequences or order-relations, are 

all constructions of the mind. 

 German mathematician David Hilbert (1862-1943) founded the Formalist in 

about 1910, even though traces of formalism can be found earlier in nineteenth century 

since Frege argued against them in the second volume of his Grundgesetze der Arithmetik 

(put the reference). Nevertheless, the modern concept of Formalism, which includes 

finitary reasoning, must be credited to Hilbert. This last school is much better known than 

logicism or intuitionism since modern books and courses in mathematical logic usually 

deal with formalism. It is important not to get confused between axiomatization and 

formalization: Euclid axiomatized geometry in about 300 B.C., but formalization only 

started about 2200 years later with the logicists and formalists. Examples of axiomatized 

theories are Euclidean plane geometry with the usual Euclidean axioms, arithmetic with 

the Peano axioms, Zermelo and Fraenkel with the nine axioms, etc.  

Hilbert’s basic idea was to formalize the various branches of mathematics and 

then to prove mathematically that each was free of contradictions. Therefore, the original 

purpose of formalism was to create a mathematical technique by means of which one 
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could prove that mathematics is free of contradictions. The following excerpt attempts to 

clarify such an idea: 

 

[…] “How do we formalize a given axiomatized theory?” 
Suppose then that some axiomatized theory T is given. Restricting us to 
first order logic, “to formalize T,” means to choose an appropriate first 
order language for T. The vocabulary of a first order language consists 
of five items, four of which are always the same and are not dependent 
on the given theory T. These four items are the following: (1) A list of 
denumerably many variables – who can talk about mathematics without 
using variables? (2) Symbols for the connectives of everyday speech, 
say ¬ for “not,” ∧ for “and,” ∨ for the inclusive “or,” → for “if then,” 
and ↔ for “if and only if,” – who can talk about anything at all without 
using connectives? (3) The equality sign =; again no one can talk about 
mathematics without using this sign. (4) The two quantifiers, the  “for 
all” quantifier ∀ and the “there exist” quantifier ∃; the first one is used 
to say such things as “all complex numbers have a square root,” the 
second one to say things like “there exist irrational numbers”. One can 
do without some of the above symbols, but there is no reason to go into 
that. Instead, we turn to the fifth item. 
Since T is an axiomatized theory, it has so called “undefined terms.” 
One has to choose an appropriate symbol for every undefined term of T 
and these symbols make up the fifth item. For instance, among the 
undefined terms of plane Euclidean geometry, occur “point,” “line,” 
and “incidence,” and for each one of them an appropriate symbol must 
be entered into the vocabulary of the first order language. Among the 
undefined terms of arithmetic occur “zero,” “addition,” and 
“multiplication,” and the symbols one chooses for them are of course 0, 
+, and X, respectively. The easiest theory of all to formalize is Zermelo 
and Fraenkel set theory since this theory has only one undefined term, 
namely, the membership relation. One chooses, of course, the usual 
symbol ∈ for that relation. These symbols, one for each undefined term 
of the axiomatized theory T, are often called the “parameters” of the 
first order language and hence the parameters make up the fifth item. 
Since the parameters are the only symbols in the vocabulary of a first 
order language, which depend on the given axiomatized theory T, one 
formalizes T simply by choosing these parameters. Once this choice 
has been made, the whole theory T has been completely formalized. 
One can now express in the resulting first order language L not only all 
axioms, definitions, and theorems of T, but more. One can also express 
in L all axioms of classical logic and, consequently, also all proofs one 
uses to prove theorems of T. In short, one can now proceed entirely 
within L, that is, entirely “formally”. (Snapper, p.5) 
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It is important to underline that both logicists and formalists formalized the 

various branches of mathematics, but their reasons were totally different. The logicists 

were interested in formalization to show that the branch of mathematics in question 

belongs to logic; the formalists wanted to use formalization to prove mathematically that 

the branch in question is free of contradictions. 

Nonetheless, another crisis in mathematics occurred in 1931, when Kurt Gödel 

showed that formalization couldn’t be considered as a mathematical technique by means 

of which one can prove that mathematics is free of contradictions. Gödel’s theorem says, 

in nontechnical language, “No sentence of L (meant as the first order language L) which 

can be interpreted as asserting that T is free of contradictions can be proven formally 

within the language L,” therefore mathematics is not able to prove its own freedom of 

contradictions. 

2.5.1.1  The definition of formal proof 

The vision of formal proof has taken different shapes during the decades of the 

twentieth century: from a strict formalist view of proof, to an epistemological 

interpretation of it, up to a more psychological explanation. 

Duval (1991) makes a clear distinction between argumentation and deductive 

reasoning. Argumentation is based on the structure of the language and on the listener’s 

representations; therefore the semantic content of the propositions is fundamental. 

Deductive reasoning is characterized by an “operational status” (statut opératoire) given 

by: 1) Entry propositions (propositions données), which are hypotheses or conclusions of 

a previous step; 2) Rules of inference (régles d’inférence), which are axioms, theorems, 

and definitions; 3) New propositions (obtenues) which are the result of the inference. In a 

deductive step the propositions are not related to each other for their semantic value, but 

only by virtue of their operational status.  

According to Duval a proof can be so defined only if it is a logical-formal 

derivation, there is no concern for its semantic value but only for the syntactic value. Any 

time we talk about the semantic content of a proposition and of the meaning of its 
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enchainment we leave the deductive scheme (the proof) and we enter into the field of 

argumentation. 

A different position is taken by Lolli (1991), who gives value of proof both to a 

logical-formal derivation and to a more “semantic procedure.” In his book “Introduzione 

alla Logica Formale” he states: The final knowledge is knowledge about the reliability of 

the relation of consequence, and they are quite abstract. The work made in process is 

difficult, if not impossible, to be coded; nevertheless the final proofs which prove the 

reliability of the relation of consequence sometimes maintain a trace of the involved 

reflection, and in part they reproduce the informal reasonings (p.43). 

Lolli shows two different approaches to the same proof of Rolle’s theorem: If f is 

a continuous function in [a,b], a < b, and differentiable in (a,b), and f(a) = f(b), exist a 

point in (a,b) where the first derivative of f is zero. 

He compares the logic-formal structure of the proof with a structure containing 

mixed expressions, with wide use of abbreviations, which correspond to the symbols 

introduced in the predicative language, especially connectives and quantifiers, but 

without respecting completely the syntax of the predicative language. He also uses 

traditional mathematical symbolism, and he puts an asterisk on the main points where 

argumentative passages have been used and which show a logical relevance.  

What follows is an excerpt of the proof of Rolle’s theorem through the structure 

that uses the mixed expressions: 

 

In particular we have already proved that: 

<<f continuous in [a,b]>> ⇒ ∃ x ∈ [a,b] <<f has an absolute maximum in x>> 

and therefore, because for hypothesis 

<<f continuous in [a,b]>> 

we have 

(*)   ∃ x ∈ [a,b] <<f has an absolute maximum in x>>, 

We say then 

(*)  let x0 be ∈[a,b] such that <<f has an absolute maximum in x0>>, 

or more schematically  
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(*)  x0 be ∈[a,b] and <<f has an absolute maximum in x0>>, 

from which we obtain 

(*)     x0 ∈[a,b] 

which we reflect on. 

In fact it is not enough, because we want to find a point in (a,b), but we are close to, and 

then we distinguish: 

(*)   or x0 ∈ (a,b)  or  (x0 = a or x0 = b) 

and we treat separately two cases with the idea that in any case we will arrive at the same 

conclusion. 

If  x0 ∈ (a,b), we prove that f’(x0) = 0. We consider 

(*)   f’(x0) ≠ 0, 

namely, the denial of what we want to obtain. With some algebraic calculus, indicating 

with ∆f the difference quotient of f, not properly because we don’t say in which point, but 

the notation could be expanded, we can see that 

∀ x (x ∈ (a,b) and <<f has a maximum in x>>         ⇒ 

<<∆f in an interval of x changes the sign>>), 

but 

x0 ∈ (a,b) and <<f has a maximum in x0>> 

therefore 

<<∆f in an interval of x0 changes the sign>> 

while the consideration made, using the theorem of the permanence of the sign comes out 

also that 

<<∆f in an interval of x0 has always the same sign>> 

we arrived at a contradiction, therefore we conclude 

(*)   f’(x0) = 0. 

Therefore, we have 

x0 ∈ (a,b) and <<f’(x0) = 0>> 
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from which 

(*)   ∃ x (x ∈ (a,b) and <<f’(x) = 0), 

and finally, 

(*)   x0 ∈ (a,b) ⇒ ∃ x (x ∈ (a,b) and <<f’(x) = 0>>) 

 

And the proof goes on. 

 

This kind of proof is different from a traditional mathematical proof as shown below. 

Proof 

Because f is continuous on a compact (closed and bounded) interval I = [a, b] it attains its 

maximum and minimum values. 

In case f(a) = f(b) is both the maximum and the minimum, then there is nothing more to 

say, for then if f is a constant function and f’ = 0 on the whole interval I. 

So suppose otherwise, and f attains an extremum in the open interval (a, b), and without 

loss of generality, let this extremum be a maximum, considering –f in lieu of f as 

necessary. We claim that at this extremum f(c) we have f’(c) = 0, with a < c <b. 

To show this, note that  

f(x) – f(c) ≤ 0 ∀x∈ I, because f(c) is the maximum.  

By definition of the derivative, we have that 

cx
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−
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Looking at the one-side limits, we note that 
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−
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=
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because the numerator in the limit is non-positive in the interval I, yet x - c > 0, as x 

approaches c from the right.  

Similarly,                                     
0)()(lim ≥

−
−

=
−→ cx

cfxfL
cx  

Since f is differentiable at c, the left and the right limits must coincide, so 0 ≤ L = R ≤ 0, 

that it is to say, f’(c) = 0. (q.e.d) 
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2.5.1.2   Lakatos’ theory of  “Proof and Refutation” 

The position taken by Lakatos is critically relevant as it is he who shows that, 

though mathematics is not an empirical science, its methods are very similar to those of 

the empirical sciences; he refers to mathematics as quasi-empirical. Lakatos goes on to 

say that mathematics grows through an incessant “improvement of guesses by 

speculation and criticism, by the logic of proof and refutation” (Lakatos, 1976). In this 

sense no proof is final, and what leads to the improvement of a proof and its growing 

acceptance is the social process of negotiation of meaning, rather than the application of 

formal criteria from the outset. 

Lakatos espouses a scheme for the mathematical discovery, namely for the growth 

of the informal theories of mathematics. It consists of the following stages: 

(1) Primitive conjecture. 

(2) Proof (a rough thought – experiment or argument, decomposing the primitive 

conjecture into sub conjectures or lemmas). 

(3) ‘Global’ counterexamples (counterexamples to the primitive conjecture) 

emerge. 

(4) Proof re – examined: the ‘guilty lemma’ to which the global counterexample 

is a ‘local’ counterexample is spotted. This guilty lemma may have previously 

remained ‘hidden’ or may have been misidentified. Now it is made explicit, 

and built into the primitive conjecture as a condition. The theorem – the 

improved conjecture – supersedes the primitive conjecture with the new proof 

– generated concept as its paramount new feature9. 

These four stages constitute the kernel of proof analysis. But there are some further 

standard stages that frequently occur: 

(5) Proofs of other theorems are examined to see if the newly found lemma or the 

new proof – generated concept occurs in them: this concept may be found 

                                                 
9 Editor’s note: In other words this method consists (in part) of producing a series of statements P1,…, Pn 
such that P1 &…Pn is supposed to be true of some domain of interesting objects and seems to imply the 
primitive conjecture C. This may turn out not to be the case – in other words we find cases in which C is 
false (‘global counterexamples’) but in which P1 to Pn hold. This leads to the articulation of a new lemma. 
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lying at the crossroads of different proofs, and thus come to be of basic 

importance. 

(6) The hitherto accepted consequences of the original (and now refuted) 

conjecture are checked. 

(7) Counterexamples are turned into new examples; new fields of inquiry open 

up. 

The author makes a clear critique of what he calls the “deductive style,” defined 

as that obligatory style of presentation developed by the Euclidean methodology. He 

claims that such a presentation begins with an accurately formulated list of axioms, 

lemmas, and/or definitions. The axioms and the definitions frequently appear artificial 

and complicated, and it is never said how such complications arise. The theorems follow 

then the axioms and the definitions. These last ones have heavy conditions; it seems 

impossible that someone could have ever created such concepts. For each theorem its 

proof follows. 

 In the deductive style of presenting a mathematical theory or a mathematical 

proof, all the propositions are true and all the inferences are valid. Counter examples, 

refutations, and critiques can never be taken into consideration. Lakatos, states that the 

deductive style hides the struggle, the adventure. The whole history disappears, and all 

the attempts made during the process of proving are neglected and only the final result is 

dignified. 

2.5.1.3    The Debate between Thurston and Jaffe & Quinn 

 In 1994 William Thurston wrote a very interesting paper (Thurston, 1994) in 

response to an article by Jaffe and Quinn (1993) who cautioned against weakening the 

standards of mathematical proof. They advocate two stages through which information 

about mathematical structures are achieved, distinguishing between theoretical 

mathematics, and rigorous mathematics. The former is represented by the phase during 

which intuitive insights are developed, conjectures are made, and speculative outlines or 

justifications are suggested. The latter is a proof-oriented phase, where the conjectures 

and speculations are correct, and are made reliable by proving them. They claim “[…]. 
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The posing of conjectures is the most obvious mathematical activity that does not involve 

proof.” (p. 6) Furthermore, weak standards of proof cause more difficulty, and they 

claim: 

Theoretical work should be explicitly acknowledged as theoretical and 
incomplete; in particular, a major share of credit for the final result 
must reserved for the rigorous work that validates it (p.10) 
 

To this extent, Thurston’s believes that their article raises interesting issues that 

mathematicians should pay more attention to, but it also perpetuates some widely held 

beliefs and attitudes that need to be questioned and examined. According to Thurston, as 

mathematicians, the correct question to ask is: “How do mathematicians advance human 

understanding of mathematics?”  He also adds: “We [mathematicians] are not trying to 

meet some abstract production quota of definitions, theorems and proofs. The measure of 

our success is whether what we do enable people to understand and think more clearly 

and effectively about mathematics” (p.163). 

In such a view, understanding and ways of thinking assume a crucial role: the 

mathematician should put far greater effort into communicating mathematical ideas, and 

to accomplish this he needs to pay much more attention to communicating not just his 

definitions, theorems, and proofs, but also his ways of thinking. There is a need to 

appreciate the value of different ways of thinking about the same mathematical structure; 

mathematicians need to focus more energy on understanding and explaining the basic 

mental infrastructure of mathematics, with consequently less energy on the most recent 

results. This entails developing mathematical language that is effective for the radical 

purpose of conveying ideas to people who do not already know them. Jaffe and Quinn’s 

distinction (1993) regarding speculation and proving is considered by Thurston as a 

division that only perpetuates the myth that our progress is measured in units of standard 

theorems deduced. He goes on to state: 

 

We have many different ways to understand and many different 
processes that contribute to our understanding. We will be more 
satisfied, more productive and happier if we recognize and focus on 
this. (p. 173) 
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 On the other hand he wants to underline that his stressing the importance of 

understanding is not any way a criticism of formal proof as such, and remarks: 

 
I am not advocating the weakening of our community standard of 
proof; I am trying to describe how the process works. Careful proofs 
that stand up to scrutiny are very important…Second, I am not 
criticizing the mathematical study of formal proofs, nor am I criticizing 
people who put energy into making arguments more explicit and more 
formal. These are both useful activities that shed new insights on 
mathematics.” (p.169) 

2.5.1.4   Other Contributions to New Interpretations of Proof 

Another very interesting contribution to new interpretations of proof has been 

facilitated by the “computer era.” Computers are employed to create or validate 

enormously long proofs, some examples of which are the “four-color” theorem (Appel 

and Haken) or “the solution to the party problem”(Radziszowski and MacKay); such 

proofs require such long computations that they cannot possibly be performed or verified 

by a human being. Because computers and computer programs are fallible, 

mathematicians will have to accept that assertions proved in this way can never be more 

than provisionally true (Hanna and Yahnke, 1996). 

 There has been talked of the zero-knowledge proof (Blum, 1986), originally 

defined by Goldwasser, Micali and Rackoff (1985). Such a proof is an interactive 

protocol involving two parties: a prover and a verifier. It enables the prover to provide to 

the verifier convincing evidence that a proof exists without disclosing any information 

about the proof itself. As a result of such an interaction, the verifier is convinced that the 

theorem in question is true and the prover knows a proof, but the verifier has zero 

knowledge of the proof itself and is therefore not in a position to convince others. 

 

 

 Hanna and Yahnke (1996) illustrate this concept taking an example from Koblitz 

(1994): 

Assume a map is colorable with three colors and the prover has a proof, 
that is, a way of coloring the map so that no two countries with a 
common boundary have the same color. The prover wants to convince 
another person that there is a proof (a way of coloring the map) without 
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actually revealing it, by letting the other person verify the claim in 
another way. 
The prover first translates the problem into a graph consisting of 
vertices (countries) and edges (common boundaries). This means that 
the prover has a function f: V → {R; B; G} that assigns the colors R 
(red), B (blue), and G (green) to vertices (countries) in such a way that 
no vertices joined by an edge have the same color. The prover also has 
two devices: Device A, which sets each vertex to flash a color (R; B; or 
G), and Device B, which chooses a random permutation of the colors 
and resets each vertex accordingly. (A permutation might cause all 
green vertices to switch to blue and all blue vertices to red, for 
example). 
The interaction between prover and verifier then proceeds as follows. 
To convince the verifier that there is proof, the prover keeps the colors 
hidden from the verifier’s view, but allows the verifier to grab one edge 
at a time and see the color displayed at the two ends (the vertices) by 
Device A. The verifier starts by grabbing any edge, looking at the 
colors at the ends and noting that they are different. The prover then 
uses Device B to permute the colors randomly; the permutation is 
unknown to the verifier. After the permutation, the verifier again grabs 
any edge and verifies that the colors at the ends are different. The 
prover again permutes the colors. The two repeat these steps until the 
verifier is satisfied that the prover knows how to color the map (has a 
proof) 
This interaction does not tell the verifier how to color the graph, nor 
does it reveal any other information about the proof. The verifier is 
convinced that the prover does have a proof, but cannot show it to 
others. Perhaps the significant feature of the zero-knowledge method, 
in fact, is that it is entirely at odds with the traditional view of proof as 
a demonstration open to inspection. This clearly thwarts the exchange 
of opinion among mathematicians by which a proof has traditionally 
come to be accepted. (p. 881) 
 
 

Another innovation introduced by computer scientists in collaboration with 

mathematicians is represented by holographic proof (Cipra, 1993; Babai, 1994). Such a 

proof consists of transforming a proof into a so-called transparent form that is verified by 

spot checks, rather than by checking every line. The idea beneath the holographic proof is 

that it is possible to rewrite a proof (in great detail, using a formal language) in such a 

way that if there is an error at any point in the original proof it will be spread more or less 

evenly throughout the rewritten proof (the transparent form). To determine whether the 

proof is free of error, therefore, one need only check randomly selected lines in the 

transparent form (Hanna and Yahnke, 1996). By using a computer to increase the number 
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of spot checks, the probability that an erroneous proof will be accepted can be lessened as 

desired. 

 All these developments lead practitioners and philosophers of mathematics 

(Horgan, 1993; Krantz, 1994) to pose intriguing questions: in relation to zero-knowledge 

and holographic proofs, for example, Babai (1994) asks the following questions: “Are 

such proofs going to be the way of the future?”; “Do such proofs have a place in 

mathematics?”; and, “Are we even allowed to call them proofs?” Many others questions 

have been posed: Should mathematicians accept mathematical propositions, which have 

only a high probability of truth, as the equivalent of propositions that are true in the 

usual sense? If not, what is their status? Should mathematicians accept proofs that 

cannot be verified by others, or proofs that can be verified only statistically? Can 

mathematical truths be established by computer graphics and other forms of 

experimentation? Where should mathematicians draw the line between experimentation 

and deductive methods? 

 Such issues and many other questions are still topics of debate among 

mathematicians and mathematics educators; for example on the Internet and in the Forum 

section of The notices of the American Mathematics Society. Such debates are a 

confirmation of the central role that proof still plays in mathematics. Ergo: 

The point we must not lose sight of is that the existence of a new 
consensus, even one with large remaining areas of disagreement, would 
not create a situation which would differ in principle from that which 
has prevailed up to now. […] There has never been a single set of 
universally accepted criteria for the validity of a mathematical proof. 
Yet mathematicians have been united in their insistence on the 
importance of proof [Hanna and Yahnke, 1996; p.884]. 
 

2.5.1.5   The role of proof 

 The incessant debate about what has to be considered a proof, or a formal proof, is 

accompanied by another very important didactical issue, namely, the role of a proof. 

Davis (1986) takes into consideration the role of proof, stating that it may play several 

different roles. A proof may validate, it may lead to new discoveries, it can be a focus for 

debate, and it can help eliminate errors. In the real world of mathematicians a proof is 

never complete and furthermore it cannot be completed: 
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There is a view of proof or a view of mathematics which I disagree 
with and I think is a myth, which says that mathematics is potentially, 
totally formalizable and, therefore, one can say, in advance, what a 
proof is, how it should work, etc. (p.336) 
 

Hanna (1990), makes a distinction between proofs that prove, and proofs that explain, 

and considers both legitimate proofs, because both meet the requirements for a 

mathematical proof, namely, they serve to establish the validity of a statement. In each 

case they consist of statements that are either axioms themselves, or follow from previous 

statements as a result of the correct application of rules of inference. 

A proof that proves shows only that a theorem is true. It is concerned only with 

substantiation (the proof the truth, validation), and that means, why-we-hold-it-to-be-so 

reasons. Not all proofs have explanatory power; one can even establish the validity of 

many mathematical assertions by purely syntactic means; with such a syntactic proof one 

essentially demonstrates that a statement is true without ever showing what mathematical 

property makes it true. A proof that explains, on the other hand, also shows why a 

theorem is true, and that means, why-it-is-so reasons, therefore the term explain is used 

only when the proof reveals and makes use of the mathematical ideas which motivate it. 

What follows is Hanna’s example that compares a proof that proves, and a proof 

that explains: 

“Prove that the sum of the first n positive integers, S(n), is equal to n(n+1)/2” 

A proof that proves 

Proof by mathematical induction: 

 For n=1 the theorem is true. 

 Assume it is true for any arbitrary K. 

 Then consider: 

 S(k+1)= S(k)+(k+1)=
2

)1( +nn +(n+1)= 
2

)2)(1( ++ nn  

 Therefore the statement is true for k+1 if it is true for k. 

 By the induction theorem, the statement is true for all n. 

Now, this is certainly an acceptable proof: it demonstrates that a mathematical 

statement is true. What it does not do, however, is show why the sum of the first n 
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integers is n(n+1)/2, or what characteristic property of the sum of the first n integers 

might be responsible for the value n(n+1)/2. (Proofs by mathematical induction are non-

explanatory in general). 

 Gauss’s proof of the same statement, however, is explanatory because it uses the 

property of symmetry (of two different representation of the sum) to show why the 

statement is true. It makes explicit reference to the symmetry, and it is evident from the 

proof that its result depends on this property: 

A proof that explains 

Gauss’s proof is as follows: 

  S= 1+    2   +       3    +…….+n 

 S=n+   (n-1)+   (n-2)  +…….+1 

------------------------------------------------------- 

 2S=(n+1)+(n+1)+(n+1)+……+(n+1)=n(n+1) 

 S=
2

)1( +nn  

Another explanatory proof of this same statement is, of course, the geometric 

representation of the first n integers by an isosceles right triangle of dots; here the 

characteristic property is the geometrical pattern that compels the truth of the statement. 

We can represent the sum of the first n integers as triangular numbers (see Figure 1) 

 

Figure 1: The sum of the first n integers as triangular numbers 

 

The dots form isosceles right triangles containing 

S(n)=1+2+3+….+n dots 

Two such sums S(n)+S(n) give a square containing n2 dots and n additional dots because 

the diagonal of n dots is counted twice. Therefore: 

1 1+2 1+2+3 1+2+3+4
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 2S(n)=n2+n 

 S(n)= 
2

)1(
2

2 +
=

+ nnnn  

 Another explanatory proof would be the representation of the first n integers by a 

staircase-shaped area as follows: a rectangle with sides n and n+1 is divided by a zigzag 

line (see Figure 2). 

 

 

 

 

The whole area is n (n+1), and the 

staircase-shaped area, 1+2+3+…+n 

only half, hence 
2

)1( +nn
 

 

 

 

 

Figure 2: Representation of the first n integers by a staircase-shaped area 

 
Both Gauss’s proof and the geometric representation show that one can adopt an 

explanatory approach to proof in the classroom without abandoning the criteria of 

legitimate mathematical proof and reverting to reliance on intuition alone. What one must 

do rather, is to replace one proof of the non-explanatory kind, by another equally 

legitimate proof that has explanatory power, the power to bring out the mathematical 

message in the theorem (Hanna, 1990). 

Furthermore a proof that convinces need not be a proof that explains: it is 

certainly possible to be convinced that a statement is true without knowing why it is true. 

The focus of an explanatory proof is clearly upon understanding, rather than upon 

deductive mechanism. According to Hanna, understanding is much more than confirming 

that all the links in a chain of deduction are correct, that in fact the completeness of detail 

in a formal deduction may obscure rather than enlighten, and that understanding requires 

some appeal to previous mathematical experience. 

2 

4 

3 

5 

1 

n+1
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 Reuben Hersh (1993) distinguishes between the role covered by proof in 

mathematical research and in the classroom. If we consider the field of mathematical 

research, then, the purpose of a proof is to convince; in fact, according to the author, the 

test of whether something is a proof is whether it convinces qualified judges. On the other 

hand, in the classroom its purpose is to explain. Hersh goes on to say, “Enlightened use 

of proofs in the mathematics classroom aims to stimulate the students’ understanding, not 

to meet abstract standards of “rigor” or “honesty”. (p.389)” 

A further distinction is made between the notion of proof in mathematical practice, 

namely in the “real life of living mathematicians,” where it is defined as convincing 

argument, as judged by qualified judges, and formal proof in the sense of formal logic. 

 Firstly, formal proof can exist only within a formalized theory. Formal proof has 

to be expressed in a formal vocabulary, founded on a set of formal axioms, reasoned 

about by formal rules of inference. But the passage from an informal, intuitive theory to a 

formalized theory inevitably entails some loss or change of meaning. Consequently, any 

result that is formally proved may be challenged: “How faithful is this statement and 

proof to the informal concepts we are actually interested in?” 

 Secondly, for many mathematical investigations, full formalization and complete 

formal proof, even if possible in principle, may be impossible in practice. These proofs 

may require time, patience, and interest beyond the capacity of most mathematicians. 

 Very often in journal and textbooks proof functions as the last judgment, the final 

word before a problem is put to bed. But the essential mathematical activity is finding the 

proof, not checking after the fact that it is indeed a proof. At the stage of creation, proofs 

are often presented in front of a blackboard, hopefully and tentatively. The detection of 

an error or omission is welcomed as a step toward the improvement of the proof. 

 Hardy (1929), one of the most eminent English mathematicians of his day, wrote: 

I have myself always thought of a mathematician as in the first instance 
an observer, who gazes at a distant range of mountains and notes down 
his observations. His object is simply to distinguish clearly and notify 
to others as many different peaks as he can. There are some peaks, 
which he can distinguish easily, while others are less clear. He sees A 
sharply, while of B he can obtain only transitory glimpses. At last he 
makes out a ridge which leads from A and, following it to its end, he 
discovers that it culminates in B. B is now fixed in his vision, and from 
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this point he can proceed to further discoveries. In other cases perhaps 
he can distinguish a ridge, which vanishes in the distance, and 
conjectures that it leads to a peak in the clouds or below the horizon. 
But when he sees a peak, he believes that it is there simply because he 
sees it. If he wishes someone else to see it, he points to it, either 
directly or through the chain of summits that led him to recognize it 
himself. When his pupil also sees it, the research, the argument, the 
proof is finished. (p.18) 
 

Hersh, recalling Hardy’s words claims that all real life proofs are to some degree 

informal. The formal logic picture of proof is not a truthful picture of real-life 

mathematical proof, to this extent he perlustrates three different meanings of proof: 

1) As the English word “prove” it means: test, try out, and determine the true state of 

affairs. 

2) In mathematics, “proof” has two meanings, one in common practice; the other 

specialized in mathematical logic and in philosophy of mathematics: 

The first one, the “working” meaning is: 

An argument that convinces specialized judges 

The second mathematical meaning, the “logic” one, is: 

A sequence of transformations of formal sentences, carried out according to the 

rules of the predicate calculus. 

Related to the role of proof in classroom, Hersh claims it is not to convince; convincing is 

no problem. Students are all too easily convinced. What a proof should do for the student 

is to provide insight into why a theorem is true. He categorizes two opposing views on 

the role of proof in teaching: he defines them as Absolutism and Humanism. 

 The Absolutist view is characterized by the idea that “without complete, correct 

proof, there can be no mathematics.” Mathematics in such an approach is seen as a 

system of absolute truths independent of human construction or knowledge; therefore, 

mathematical proofs are external and eternal. Proofs are to admire, hopefully to 

understand, but not to play with, not to break apart. Hersh defines the figure of the 

Absolutist teacher as the one who tells the student nothing except what he will prove (or 

assign to the student to prove). The proof chosen will be either the most general, or the 

shortest. He will not be concerned about how explanatory the proof is, because 
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explanation is not the purpose of the proof, but it is certification: admission into the 

catalog of primarily absolute truths. 

 In the Humanist view “Proof is complete explanation.” Proofs are not obligatory 

rituals. In brief, the purpose of proof is – understanding. The choice of whether to present 

a proof as is, to elaborate it, or to abbreviate it, depends on which is likeliest to increase 

the student’s understanding of concepts, methods, and applications. 

2.5.2. Proof as process 

2.5.2.1.   Harel’s Theory of Proof Schemes 

Harel (1998) defines the process of proving in the following way: 

By “proving” we mean the process employed by an individual to remove or 
create doubts about the truth of an observation. (p. 241) 
 

Ascertaining and persuading are the two sub processes included in the process of 

proving: 

Ascertaining is the process an individual employs to remove her or his own 
doubts. Persuading is the process an individual employs to remove others’ 
doubts about the truth of an observation. (p. 241) 
 
One of the main concerns of Harel’s research is to understand and describe how 

individuals prove or justify, more specifically, how students ascertain for themselves or 

persuade others of the truth of a mathematical observation. To this extent a classification 

of Proof Schemes has been created, where the proof scheme has been defined as: A 

person’s proof scheme consisting of what constitutes ascertaining and persuading for 

that person (p.244). 

The author stresses that the definitions of the process of proving and proof scheme 

are deliberately psychological and student-centered; each of the categories of the proof 

schemes in the classification represents a cognitive stage, an intellectual ability, in 

students’ mathematical development, and all have been derived from the observations of 

the actions taken by actual students in their process of proving. 

What characterizes the construction of the proof schemes is the individual’s scheme 

of doubts, truths, and convictions, in a given social context. The entire system is 

constituted by three main categories of proof schemes, each of them containing several 
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subcategories. The first category is represented by the External conviction Proof 

Schemes:  “When the formality in mathematics is emphasized prematurely, students 

come to believe that ritual and form constitute mathematical justification. When students 

merely follow formulas to solve problems, they learn that memorization of prescriptions, 

rather than creativity and discovery, guarantee success. And when the teacher is the sole 

source of knowledge, students are unlikely to gain confidence in their ability to create 

mathematics…schemes by which doubts are removed by a) the ritual of the argument – 

the ritual proof scheme; b) the word of an authority – the authoritarian proof scheme; or 

c) the symbolic form of the argument - the symbolic proof scheme” (p.246). 

The second category is represented by the Empirical Proof Schemes: “In an empirical 

proof scheme, conjectures are validated, impugned or submitted by appeals to physical 

facts or sensory experiences” (p.252). 

In the Empirical Proof Scheme it is possible to distinguish between two kinds of 

schemes: The inductive empirical proof scheme and the perceptual empirical proof 

scheme. A person possesses an inductive proof scheme when they ascertain for 

themselves and persuade others about the truth of a conjecture by quantitatively 

evaluating10 the conjecture in one or more specific cases. The perceptual proof scheme is 

characterized by perceptual observations made by means of rudimentary mental images – 

images that consist of perceptions and a coordination of perceptions, but lack the ability 

to transform or to anticipate the results of a transformation, “The important characteristic 

of rudimentary mental images is that they ignore transformations on objects or are 

incapable of anticipating results of transformations completely or accurately” (p.255). 

The third category is represented by the Analytical Proof Schemes; in this case the 

conjectures are validated by means of logical deductions. By logical deduction is meant 

much more than what it is commonly referred to as the “method of mathematical 

demonstration” – a procedure involving a sequence of statements deduced progressively 

by certain logical rules from a set of statements accepted without proofs (i.e., a set of 

axioms). 

                                                 
10 e.g., direct measurements of quantities, numerical computations, substitutions of specific numbers in 
algebraic expressions, etc. 



 61

Two subcategories belong to this category are: the transformational proof scheme, and 

the axiomatic proof scheme. 

The Transformational proof scheme belongs to the third category and it is so 

defined: “Transformational observations involve operations on objects and anticipations 

of the operations’ results. They are called transformational because they involve 

transformations of images- perhaps expressed in verbal or written statements- by means 

of deduction” (p.258). The following episode is an example of transformational proof 

scheme: 

Amy demonstrates to the whole class how she imagines the theorem, 
“The sum of the measures of the interior angles in a triangle is 180°.” 
Amy says something to the effect that she imagines the two sides AB 
and AC of a triangle ABC being rotated in opposite directions through 
the vertices B and C, respectively, until their angles with the segment 
BC are 90° (Figure 3a, b). This action transforms the triangle ABC into 
the figure A’BCA,’’ where A’B and A’’C are perpendicular to the 
segment BC. To recreate the original triangle, the segments A’B and 
A”C are tilted toward each other until the points A’ and A” merge back 
into the point (Figure 3c). Amy indicates that in doing so she “lost two 
pieces” from the 90° angles B and C (i.e. angles A’BA and A’’CA) but 
at the same time “gained these pieces back” in creating the angle A. 
This can be better seen if we draw AO perpendicular to BC: angles 
A’BA and A”CA are congruent to angles BAO and AOC, respectively 
(Figure 3d) 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Amy's dynamic representation 
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The interpretation given by Harel is the following: Amy views a triangle as a 

dynamic entity; it is a product of her own imaginative construction, not of a passive 

perception. Her operations were goal oriented and intended the generality aspect of the 

conjecture. She transformed the triangle and was fully able to anticipate the results of the 

transformations, namely, that the change in the 90° angles B and C caused by the 

transformations is compensated for by the creation of the angle A. All this leads to her 

deduction that the sum of the measures of the angles of the triangle is 180°. 

The Transformational Proof Scheme possesses two different cognitive levels: the 

internalized proof scheme, and the interiorized proof scheme. 

According to Harel, “An internalized proof scheme is a transformational proof 

scheme that has been encapsulated into a proof heuristic – a method (of proof) that 

renders conjectures into facts” (p. 262). Harel gives the following example: “to prove two 

segments in a given figure are congruent, students commonly look for two congruent 

triangles that respectively include the two segments” (p. 262). Such a proof heuristic is 

abstracted by the students from the repeated application of an approach they have often 

found to be successful. 

Harel continues, “An interiorized proof scheme is an internalized proof scheme that 

has been reflected upon by the person possessing it so that they become aware of it. A 

person’s awareness of the proof scheme is usually observed when the person describes it 

to others, compares it to other proof schemes, specifies when it can or cannot be 

used…by definition, the interiorization process cannot occur unless the internalization 

process has taken place (p. 265). 

The last component of the Analytical Proof Scheme is the Axiomatic Proof Scheme, 

which can be Intuitive, Structural, or Axiomatizing. Harel determines, “When a person 

understands that at least in principle a mathematical justification must have started 

originally from undefined terms and axioms (facts, or statements accepted without proof), 

we say that person possesses an axiomatic proof scheme” (p.273). 

The intuitive-axiomatic proof scheme is possessed by a person who is necessarily 

aware of the distinction between the undefined terms, such as “point” and “line,” and 

defined terms, such as “square” and “circle,” and between statements accepted without 
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proof, and ones that are deducible from other statements. However, Harel clarifies: “He 

or she, however, may be able to handle only axioms that correspond to her or his 

intuition, or ideas of self-evidence, such as for any a and b in F, a + b = b + a in relation 

to her or his experience with real numbers, or one and only one line goes through two 

points in relation to her or his imaginative space” (p.273). 

A structural proof scheme is an axiomatic proof scheme by which one thinks of 

conjectures and theorems as representations of situations from different realizations that 

are understood to share a common structure characterized by a collection of axioms. 

According to the author the structural proof scheme is a cognitive prerequisite to 

the axiomatizing proof scheme – a scheme by which a person is able to investigate the 

implications of varying a set of axioms, or to axiomatize a certain field. 

2.5.2.2   Cognitive Unity of Theorems 

 The definition of Cognitive Unity was born as product of a study concerning the 

difficulties met by the students in the approach to proof. When confronted with students’ 

statement of “empty mind” when they face a proof, Boero along with other researchers 

underline the importance that beginners’ proving must be rooted in the argumentative 

activity consisting in the search and elaboration of arguments for the plausibility of the 

conjecture (see Boero, Garuti & Mariotti, 1996; Garuti, Boero, Lemut & Mariotti, 1996; 

Mariotti et al., 1997; Boero, Garuti & Lemut, 1999). 

 The implications for the research are: 

• Identification of possible kinds of inference intervening in the conjecturing 

process and their roots (within the school and outside of the school); 

• Investigation about possible links between the identified kinds of inference during 

the conjecturing phase, and strategies during the subsequent proving phase, in 

particular as this concerns the classic “analysis” and “synthesis” methods. 

 

In such a context the “cognitive unity of theorems” (Garuti et al., 1996) has been defined 

as that peculiar situation where some arguments, produced for the plausibility of the 
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conjecture during the conjecture production (or appropriation) phase, become 

ingredients for the construction of proof. 

According to Garuti’s initial intuition, cognitive unity of theorems concerns the 

possible continuity between some aspects of the conjecturing process and some aspects of 

the proving process: first of all, the arguments. During the conjecturing phase some 

relations, known properties, evidences, general rules, etc. can be produced or evoked as 

reasons for the plausibility of the conjecture. Some of these arguments can intervene in 

the proving process as relevant arguments to support further findings (e.g. 

generalizations), or as components of the final deductive reasoning. But cognitive unity 

(as “that particular situation…) concerns also those conditions that allow some 

arguments, produced during the conjecturing phase, to be exploited during the proving 

phase. 

The cognitive unity is characterized by: 

• Continuity of the mathematical frame (if this continuity is not kept, most 

arguments produced in the conjecturing phase are not recyclable in the proving 

phase: consider conjecturing within a synthetic geometry frame and proving 

within an analytic geometry frame). 

• The continuity of the exploration strategies and heuristics (if this continuity is not 

kept, arguments which are relevant in a given exploration during the conjecturing 

phase may become useless, or even be forgotten, in another kind of exploration 

during the proving phase). 

• The continuity of the external representation (an important change in the external 

representation between the conjecturing phase and the proving phase can make 

unavailable all the arguments that are strictly related to a peculiar representation – 

for instance, visual arguments related to graphs of functions can become 

unavailable when we move to use algebraic language). 

 

It is important to clarify that “cognitive unity of the theorems” concerns the 

arguments and related conditions of continuity in the transition from conjecturing to 

proving, not the possible “structural” analogy, or “continuity” between the argumentation 
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during the different phases of the activity that springs from the search of a conjecture to 

the text of the proof. 

The problem from a structural point of view has been faced by Pedemonte (2002) 

who distinguishes between “reference system continuity” (the one considered by Garuti 

et al., 1996; what has been defined as “cognitive unity of theorems”) and the “structural 

continuity” concerning the structure of argumentation, according to Toulmin’s model. In 

particular, very frequently it happens that the “reference system continuity” is kept, while 

the “structural continuity” is broken. The following example shows such a situation: 

 

The example concerns an abductive process in the phase of the 
conjecturing and/or early proof construction. In this case, it is evident 
that the search for a general condition under which the regularity under 
scrutiny is a possible consequence, is guided by the need of providing a 
theoretic argument in the perspective that it becomes a premise for a 
deductive step. 
As we will see in the protocol, the break in structural continuity 
consists of the shift 
…from a creative process: 
given an argument B (an experienced regularity) 
both an argument A (a condition for regularity) 
and a possible inference A → B are searched for. 
…to a deductive enchaining: 
if A, then B, because… 
The shift implies inverse temporal movements between B and A in the 
two phases of the activity: 
From B as a possible consequence, to A as a possible case; 
Then, 
From A to B through deduction. 
Structural continuity is broken as a consequence of a cultural need, 
which ensures both the abductive search for arguments and their final 
deductive enchaining. We can remark that cognitive unity (as 
“reference system continuity”) is kept. 
Here there is an exemplary protocol illustrating these phenomena. 
Undergraduate mathematics students were asked to produce (and 
prove) a conjecture that generalizes the elementary theorem: “The sum 
of two consecutive odd numbers is divisible by four.” About one half of 
students produced the conjecture “The sum of an even number P of 
consecutive odd numbers is divisible by 2P.” Only one third of them 
produced a valid, rigorous proof for this conjecture (cfr. Boero et al., 
2002). 
Elena (a clever student) performs the algebraic proof of the given 
theorem “(2K+1) + (2K+3) = 4K + 4 = 4 (K+1)”; then she writes: 
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OK, this formally proves that the theorem that I must generalize is true, 
but it does not explain why it is really true. It I want to get a 
generalization, I think that I must try to understand better why it is true. 
3+5=8 
7+9=16, double of eight 
11+13=24 double of 12; 
111+113=124 
19+21=40 
109+111=220 
Two odd consecutive numbers…I consider the even number between 
them. 
(2s-1) is the preceding odd number 
(2s+1) is the following number. 
Now I understand: the sum is 4s. 
This might be a particular case of the sum of 
…+2s-3+2s-1 + 2s+1 +2s+3+… 
A sum of couples of odd numbers…it should make 4s multiplied for 
the number of couples, the mechanism of cancellation is the same! 
Strong: I notice that it is like the anecdote about the young Gauss! 
(The anecdote had been discussed during the course, following M. 
Wertheimer’s interpretation in his book “Productive thinking”). 
The conjecture is: ‘The sum of an even number of consecutive odd 
numbers is divisible by the double of the number of added numbers.’ 
The proof might be: 
I represent the sum of couples of odd numbers as balanced couples 
“even intermediate – number, even intermediate + number.” 
Their sum repeats the double of the intermediate even number as many 
times as the number of couples (underlining in the original). Then it is 
true that the sum is divisible by the double of the even number of 
couples. 

2.5.3.  The teaching of proof 

 The great changes in the views and interpretations of proof and its role have also 

influenced the approach to teaching it. The late 50’s were characterized by the entrance 

of the “New Math”, influenced by the work of Bourbaki; until that moment the teaching 

of proof in mathematics education was limited to geometry, where a proof was more a 

ritual to be followed than a source of deeper mathematical understanding. The New 

Math-influenced mathematics curriculum introduced a new emphasis on axiomatic 

structure and proof, and was seen going well beyond geometry: this reform, like others, 

aimed at the improvement of mathematical understanding. Unfortunately, the “new math” 

failed the goal concerning proof; its demise was due to an exaggerated emphasis on 

formal proof. 
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 After this decline, several other approaches emerged: from instruction by 

discovery to cooperative learning, learning through problem –solving to classroom 

interaction. All of these approaches exercised significant influence on the curriculum 

even though none of them gained universal acceptance.  

 Among the most influential theories of mathematics education we may recall 

Constructivism in its various forms. The basic tenet of this approach is that knowledge 

cannot be transmitted, but must be constructed by the learner (von Glasersfeld, 1983; 

Cobb, 1988; Kieren and Steffe, 1994). Such a theory has been at the center of several 

misinterpretations; many have seen in it an approach that undermines the role of the 

teacher in the classroom; at precisely the same time a number of experimental studies 

have just confirmed the importance of the role of the teacher. These studies have shown 

the value of approaches such as debating, restructuring, and pre-formal presentation, all 

of which posit a crucial role for the teacher in helping students to identify the structure of 

a proof, to present arguments, and to distinguish between correct and incorrect 

arguments. 

 In tandem with approaches to teaching proof through classroom debate, we may 

utilize Alibert (1988), who designed an experimental study in which teachers had 

students engage in debate to assist in the understanding of a mathematical justification. 

His concern is about mathematical productions of many students at the beginning of the 

first year in the university, who often seem to mimic the writing of the teacher. 

According to Alibert, syntactic characteristics often seem to prevail over semantic 

characteristics; therefore the control of the meaning does not appear to be a primary 

purpose of the students’ texts.  

What the author wants to underline is that meanings are not used as a means of 

controlling the results of algorithms. During his observations he noticed that for the 

students proof is usually only a formal exercise to be completed for the teacher, but there 

is no deep necessity for it; to this extent he designed an experimental teaching method 

applied to teach mathematics in the first year at the University, and set in place a 

particular theoretical framework. This framework is based on  
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a) “théorie des situations didactiques” (Brousseau, 1986); b) plurality of conceptual 

settings (Douady, 1986); c) the development of a sense of the need for proof generated by 

the role of contradictions (Balacheff, 1982); d) the importance of the role of the group of 

students for the construction of meaning (Bishop, 1985; Balacheff & Laborde, 1985); e) 

meta-mathematical factors, such as systems of representation in mathematics, and the 

way mathematics is learned as very important tools in the learning process (Schoenfeld, 

1983); and f) the constitution of a “learner’s epistemology,” meant as the set of problems 

and situations the single student builds during the constitution process of a particular 

concept. 

The author believes that the necessity and the functionality of proof can only 

surface in situations in which the students meet uncertainty about the truth of 

mathematical propositions. According to this idea the generation of scientific debate and 

how it unfolds in the classroom takes place as follows: 

First step: The teacher initiates and organizes the production of scientific statements by 
the students. These are written on the blackboard without any immediate evaluation of 
their validity. 
 
Second step: The statements are put to the students for consideration and discussion. 
They must come to decisions about their validity by taking a vote; each opinion must be 
supported in some way, by scientific argument, by proof, by refutation, by counter-
example… 
 
Third step: The statements that can be validated by a full demonstration to become 
theorems; those found to be incorrect are preserved as “false statements” associated with 
appropriate counter-examples. The students’ lecture notes are observed to contain these 
two kinds of statements. (p.32) 
(For detailed examples, see Alibert, 1988; p.32) 
 

In this form of “scientific debate” the proof arguments made by the students are not 

addressed to the teacher but to the other students; and proofs are distinguished between 

proofs to convince and proofs to show. In the former, arguments are produced to convince 

someone (such as another student) of something that is not already a part of his or her 

institutionalized knowledge; in the latter the target is to show someone (such as the 

teacher) that we have reached some knowledge that he already possesses; the activity 

involved in the first process is fundamentally different from the one involved in the 
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second, in such a way that it is able to produce a deepening of knowledge and its 

meaning. In this situation the student, therefore, tries to convince others, and himself or 

herself at the same time, of the truth of a conjecture that has been formulated (by other 

students or by him/herself) in answer to some problem the whole group of students is 

trying to solve; they all know that the conjecture is not necessarily true, and in particular 

that it is not yet established as an item of institutionalized knowledge (‘co-didactic 

situation’). This process of interactions and conflicts between the students’ conception 

will enhance the need for clarifications of contradictions leading to an emerging need for 

proof (See Alibert, 1988, for further details). 

 Other researchers have investigated the use of classroom debate in order to teach 

proof and its uses. Balacheff (1988) talks about 3-stage method (débat socio-cognitif): in 

such a procedure the teacher guides the students through discussions in which they come 

up with a conjecture, perform appropriate measurements to test it, and then create a proof 

in support of their conjecture. 

 Further studies have focused on the meaningfulness of a proof, namely, 

Movshovitz-Hadar (1988) and Leron (1983) have shown that there are a number of 

techniques to make proofs more meaningful to students. For example, the same theorem 

may be proved in several different ways in the same class; or a proof can be restructured 

to make its overall structure clear, before each step is looked at in detail. A proof by 

contradiction can be avoided, when possible, replacing it with a constructive one. 

 Movshovitz-Hadar insists on the importance of the fact that the more stimulating a 

presentation of a theorem is the more successful is the setting of the stage for the coming 

proof: 

Very often in going through a formal proof, particularly those suffering 
from the "let us define a function" syndrome (Avital, 1973) the student 
feels treated shabbily. The origin of the proof remains a mystery and 
the student is left with a frustrated feeling of not being wise enough, 
not only not as wise as the person who invented the proof, but not even 
wise enough to understand how the inventor came up with the idea. The 
attitude towards mathematics, which is encouraged this way, is: "I'll 
never understand it, it is not for me" (p.18) 
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In Movshovitz-Hadar’s article (1988), she presents two theorems and several 

ways to present them and their proofs. The basic point is to trigger students' intellectual 

curiosity in order to make them wonder: "HOW COME???" in reading or hearing a 

statement, in contraposition with a common reaction translated by "SO WHAT???" In 

this sense if mathematics teachers agree to give first priority to thought-provoking 

presentations, priority should be given to the ones causing some kind of surprise. 

Concerning this argument I believe it is beneficial to examine one of the examples 

given by the author, regarding a property of prime numbers. The issue is introduced by 

Movshovitz-Hadar through what she defines a surprising imposition. She writes: 

<<Honsberger (1970) tell us that Sundaram's Sieve was invented in 1934 by a 

young East Indian student, named Sundaram, as an instrument for sifting prime numbers 

from positive integers. The Sieve consists of the infinite table represented by Table 1. 

Table 1: Sundaram’s Sieve 

4 7 10 13 16 19 22 25 … 

7 12 17 22 27 32 37 42 … 

10 17 24 31 38 45 52 59 … 

13 22 31 40 49 58 67 76 … 

16 27 38 49 60 71 82 93 … 

. . . . . . . . … 

 

The remarkable property of this table is: If N occurs in the table, then 2N+1 is not a 

prime number; if N does not occur in the table, then 2N+1 is a prime number.>> (Ibid. 

p.75). 

It is surprising because even though the entries in the table have immediately visible 

additive properties, they do not have anything that ties them with primality; basically a 

multiplicative property. As suggested by Mason et al. (1985), mathematical thinking is 

provoked by a gap between new impressions acting on old views (p.15); in the prime 

number case, it is the gap between a collection of arithmetic progressions having an 

obvious regularity resulting from their additive property, and the fact that prime numbers 

are defined by a multiplicative property and are known to have little regularity. 
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Three different presentations of the proof are taken into consideration: 

A formal proof 

In Table 1 the first row comprises all the terms of the infinite progression beginning with 

4, 7, 10… This progression is also used to generate the first column. Succeeding rows are 

then completed so that each consists of an arithmetic progression, such that the common 

differences in successive rows are the odd integers 3, 5, 7, 9, 11… Sundaram's claim is: If 

the number N occur in this table, then 2N+1 is not a prime number; if N does not occur in 

the table, then 2N+1 is a prime number. Honsberger (Ibid. pp.84-5) proceeds with the 

proof as follows: 

 

Proof: We begin by finding a formula for the entries in the table. The 
first number in the nth row is 
 4+(n-1)3 = 3n+1 
The common difference of the arithmetic progression comprising the 
nth row is 2n+1; hence the mth number of the nth row is 
 3n+1+(m-1)(2n+1) = (2m+1)n + m. 
Now, if N occurs in the table, then N = (2m+1)n + m  for some pair of 
integers m and n. Therefore, 
 2N+1 = 2(2m+1)n+2m+1 = (2m+1)(2n+1) 
is composite. 
Next, we must show that, if N is not in the table, 2N+1 is prime; or, 
equivalently, if 2N+1 is not prime, N is in the table. So, suppose 2N+1 
= ab, where a, b, are integers greater than 1. Since 2N+1 is odd a and b 
must both be odd, say 
 a=2p+1 , b=2q+1 
so that 
 2N+1=ab=(2p+1)(2q+1)=2p(2q+1)+2q+1 
and  
 N=(2q+1)p + q. 
But this means N appears as the qth number of the pth row in the table. 
We conclude that N occurs in the infinite table represented by the Table 
2 if 2N+1 is not a prime number. 
 
 

Movshovitz-Hadar declares that every step in this proof is clear; Sundaram's sieve 

is admittedly valid, and yet the manner in which the Indian student came up with his 

remarkable idea remains altogether mysterious. Probably, many readers feel a bit 

disappointed after going carefully through this proof for we still have no answer to the 

question, what do these arithmetic progression have to do with primality? This proof does 

not make us any wiser. The tension caused by the surprising declarative statement is not 
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relieved (This is a proof that Hanna would define a proof as one that proves, not that 

explains). 

Let us continue with the second approach. 

A gap-bridging proof 

1. The claim we wish to prove concerns the odd numbers. Let us transform every 

number N occurring in Table 1 to the corresponding K satisfying K=2N+1, as 

shown in Table 2. Consequently, the statement to be proved becomes: K occurs in 

the infinite table represented by Table 2 if K is not prime. 

Table 2: Sundaram’s Sieve Transformed 

9 15 21 27 33 39 45 51 … 

15 25 35 45 55 65 75 85 … 

21 35 49 63 77 91 105 119 … 

27 45 63 81 99 117 135 153 … 

33 55 77 99 121 143 165 187 … 

. . . . . . . . … 

 

2 As any odd integer is a product of two odd integers, the infinite multiplication 

table of all pairs of odd integers (Table 3), must contain all primes except 2. 

3 By definition, all prime numbers (except 2) occur in the first row and column of 

this table, and no prime number occurs elsewhere. In addition, any odd composite 

integer must occur at least once outside of the first row and column. 

4 On the other hand, if we omit the first row and the first column of Table 3, the 

remainder is identical with Table 2. This is because, like any integer-

multiplication table, Table 3 is, in fact, a set of row arithmetic progressions with 

the marginal numbers as their respective common differences. 

5 We conclude that Table 2 contains all odd composite integers and no primes. In 

other words: For any odd integer K, if K is prime, then it does not occur in Table 

2, and if K does not occur in Table 3, then K is prime. (Q.E.D.) 
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Table 3: Multiplication table of odd integers 

X 1 3 5 7 9 11 13 15 17 … 

1 1 3 5 7 9 11 13 15 17 … 

3 3 9 15 21 27 33 39 45 51 … 

5 5 15 25 35 45 55 65 75 85 … 

7 7 21 35 49 63 77 91 105 119 … 

9 9 27 45 63 81 99 117 135 153 … 

11 11 33 55 77 99 121 143 165 187 … 

. . . . . . . . . . … 

 

 This proof bridges the gap, created by the statement of the theorem, between the 

arithmetic progressions and prime numbers. The bridging takes place at the multiplication 

table of odd numbers in step 4 where arithmetic progressions and primes intersect. This 

proof may be called "responsive" since it responds to the stimulation created by the 

theorem. In general, responsive proofs usually leave most of the audience with an 

appreciation of the invention, along with a feeling of becoming wiser. 

The last one considered by the author is: 

A bottom-up development of the proof (and of the theorem) 

In this case we suppose we have no idea whatsoever about Sundaram's Sieve. We will 

consider the mainline of a sequence of tasks leading gradually to the discovery of the 

sieve. 

 The goal: At the end of this sequence you will have discovered an algorithm 

separating all primes from the positive integers. 

a) Recall the definition of a (natural) prime number and a (natural) composite number. 

b) What property do all prime numbers except 2 have in common? (Answer: All are odd). 

c) In view of the previous finding, how can the goal be simplified? (Answer: In order to 

separate the primes from the positive integers it is sufficient to separate the odd-primes 

from the odd-positive integers). 
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d) Construct the multiplication table of the odd positive integers up to 17 (Result: See 

table 3 above). 

Consider this table as representative of the infinite table of the products of all pairs of odd 

integers. Study its properties: 

1. What property do all entries in the infinite table have in common? (Answer: All 

are odd integers as any odd number is a product of at least one pair of odd 

numbers). 

2. Where do all prime numbers occur in the infinite table? (Answer: In the first row 

and column). 

3. Where do only composite numbers occur? (Answer: In the complementary part of 

the table, that is in all but the first row and column). 

e) If we omit the first row and the first column of the infinite multiplication table of odd 

positive integers, what kind of integers are left in the reduced table? (Answer: The 

reduced table contains all composite odd numbers and only them). 

f) Restate your findings in terms of a conditional statement: 

If an odd integer K occurs in the reduced table, then… 

If and odd integer K does not occur in the reduced table, then… 

g) Let K designate any odd integer, then K=2N+1 for some integer N. Transform the 

reduced table by replacing K with the corresponding N and restate your summary in 

term of N. (Ans.: The transformed table coincides with Table 1 and above the 

statement is Sundaram's: If N occurs in the table, then 2N+1 is not a prime and vice 

versa.) 

h) Based upon the finding in step "g" create a flow chart describing an algorithm by 

which you can now determine for any given positive integer N whether or not N is 

prime (Result: For an elaboration of this task see Hadar & Hadass, 1983). 

 

Clearly, this task-sequence proceeds in a bottom-up fashion, from previous knowledge 

about prime numbers and odd integers, to the discovery of Sundaram's Sieve. It is 

noteworthy that the theorem is stated at the end of the process, at which stage it has 

already been proven. The sequence, therefore, is constructive (p.16). 
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The “structural method” (Leron, 1983) is an alternative method to the original 

step-by step, “linear” way of presenting proofs that proceeds unidirectionally from 

hypotheses to conclusions, considered by Leron as probably well suited for securing the 

validity of proofs, but unsuitable for mathematical communication. The aforementioned 

method aims to increase the comprehensibility of mathematical presentations while 

retaining their rigor; and its basic idea is to arrange proofs in levels, going from the top to 

the bottom. Each level consists of short autonomous “modules,” and each module 

embodies one major idea of the proof. 

The top level gives a precise, but in very general terms, main line of the proof; the 

second level elaborates on the generalities of the top level, supplying proofs for 

unsubstantiated statements, details for general descriptions, specific constructions for 

objects whose existence has been merely asserted and so on; the procedure continues 

down where each level supplies more details. Leron writes: “One may think of the 

structural approach as viewing proof (which is at ground level) from a tall building. 

When viewing from the top we see the whole proof at a glance, but only in vague outline, 

no details can be discerned. As we descend the levels of the building, a zooming effect 

occurs: our view encompasses smaller and smaller segments of the proof, but these are 

seen with more and more clarity” (p.175). 

The following pictures represent Leron’s pictorial comparison of the two 

approaches: the linear method is represented by an oriented line segment; the structural 

method by a “structure diagram.” 

 

Beginning                        end 

  (hypotheses)        (conclusion) 

 

Figure 4: The linear method 
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Figure 5: The structural method 

The top level is normally very short and free of technical details (i.e., notational, 

computational, etc.,); the bottom level is quite detailed, resembling in this respect the 

standard linear proof. The intermediate levels entail the role of facilitating a smooth 

transition from the generalities of the top level to the details of the bottom, from the 

global to the local perspective; and in each module (box) the argument flows linearly, but 

it is very short and “flat,” therefore it can again be grasped at a glance. 

What follows is an example chosen from amongst the several ones given by Leron 

concerning Algebra, Calculus, Geometry, Linear Algebra and so on; it compares the two 

aforementioned structures. 

A Theorem on Limits 

Theorem: if lim x→a f(x) = L   and lim x→a g(x) = M, then lim x→a f(x) g(x)= LM. 

Proof in the linear style (taken from a real calculus textbook). 

Let ε > 0 be given and let η be the smaller of 3/ε  and ε/3(1+⏐L⏐+⏐M⏐). Since lim 

x→a f(x) = L, there exists a δ1 > 0 such that ⏐f(x)-L⏐< η whenever  0<⏐x-a⏐< δ1. 

Similarly, there exists a δ2 >0 such that ⏐g(x)-M⏐< η whenever 0<⏐x-a⏐< δ2. Let δ be 

the smaller of δ1 and δ2. Now if 0<⏐x-a⏐< δ, then 0<⏐x-a⏐<δi, i=1,2 and so we have: 

⏐f(x)g(x)-LM⏐= ⏐L(g(x)-M) +M(f(x)-L)+(f(x)-L)(g(x)-M)⏐≤ ⏐L⏐⏐(g(x)-M)⏐+ 

⏐M⏐⏐(f(x)-L)⏐+⏐(f(x)-L)⏐⏐(g(x)-M)⏐< 

⏐L⏐ε/3(1+⏐L⏐+⏐M⏐)+⏐M⏐ε/3(1+⏐L⏐+⏐M⏐)+ 3/ε 3/ε ≤ ε/3⋅ε/3⋅ε/3 = ε   (q.e.d.) 

  

Fortunately, many instructors know better. They let the student in on the secret of 

how these mysterious quantities η and δ are actually discovered. But in so doing the 
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direction of the argument is reversed, and eventually they have to abandon this 

unorthodox discussion and recast the official proof in more-or-less the form above (or at 

least mention that this recasting should be done). 

 The argument in the following structured proof resembles this informal discussion 

but at the same time it is quite formal and rigorous. Thus the structural approach brings 

closer the human process and the formal-deductive one (p.179). 

A structured proof 

 Level 1. Let ε >0 be given. We find (in level 2) a δ>0 such that 0<⏐f(x)g(x)-

LM⏐<ε whenever 0<⏐x-a⏐<δ. Thus the theorem is proved. 

 

 In the Elevator. We have to show that the expression ⏐f(x)g(x)-LM⏐can be made 

as small as we please. To this end, we try to bound it by an expression we know can be 

made small. Such expressions are ⏐f(x)-L⏐, ⏐g(x)-M⏐and multiples of these by a 

constant and by each other. After some trial and error the following expression emerges: 

 

(*)   f(x)g(x)-LM=L(g(x)-M)+M(f(x)-L)+(f(x)-L)(g(x)-M). 

 

 Level 2. Using the equality (*) we have: 

 

⏐f(x)g(x)-LM⏐ = ⏐L(g(x)-M)+M(f(x)-L)+(f(x)-L)(g(x)-M)⏐ ≤ ⏐L⏐⏐(g(x)-M)⏐+ 

⏐M⏐⏐(f(x)-L)⏐+⏐(f(x)-L)⏐⏐(g(x)-M)⏐. 

 

We find a δ>0 (in Level 3) such that whenever 0<⏐x-a⏐<δ, each of the terms on the 

right-hand side is smaller than ε/3. Thus the left-hand side is smaller than ε, as required. 

 

 In the Elevator. To get ⏐L⏐⏐g(x)-M⏐< ε/3, we try to make ⏐g(x)-M⏐< ε/3 ⏐L⏐. 

However, there is a bug here: this only works if L ≠ 0. One way of correcting this bug is 

to replace ⏐L⏐ by 1+⏐L⏐. The case of ⏐M⏐⏐f(x)-L⏐ is similar. Finally, to get ⏐f(x)-

L⏐⏐g(x)-M⏐< ε/3, we make each of the factors smaller than 3/ε . 
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 Level 3. We choose positive δ1, δ2, δ3, δ4 such that the following hold: 

 

⏐f(x)-L⏐< ε/3(1+⏐M⏐)  whenever   0<⏐x-a⏐<δ1; 

 ⏐g(x)-M⏐< ε/3(1+⏐L⏐)  whenever   0<⏐x-a⏐<δ2; 

  ⏐f(x)-L⏐< 3/ε               whenever   0<⏐x-a⏐<δ3; 

  ⏐g(x)-M⏐< 3/ε               whenever   0<⏐x-a⏐<δ4. 

 

(Such δi’s exist since L and M are the limits of f(x) and g(x) respectively). Now let δ be 

the smallest of δ1, δ2, δ3, δ4, so that if 0<⏐x-a⏐< δ then 0<⏐x-a⏐< δi, i=1,2,3,4. Then 

whenever 0<⏐x-a⏐< δ, the expressions ⏐L⏐⏐g(x)-M⏐, ⏐M⏐⏐f(x)-L⏐,and ⏐f(x)-

L⏐⏐g(x)-M⏐all become smaller than ε/3. Thus δ satisfies the requirements of Level 2. 

 

 Remark. As seen from this example, structural proofs take longer to deliver, but (I 

believe) are shorter to digest. In fact, they are longer because they contain more 

information (namely, the structure of the proof), and it is this very information that makes 

them more learnable, illuminating and humane. Thus switching to structured proofs we 

simply agree to share with our students (or readers) more of what we know about the 

proof. And it is my belief that the loss in economy is more than balanced by the gain in 

learning. 

According to Leron, the use of a structural style allows us to better communicate 

the ideas behind the formal proofs; namely, the main idea is given in the top level, 

auxiliary ideas are packaged in autonomous modules, and the interconnections between 

the separate ideas are made explicit through the structural diagram. Furthermore, using 

such an approach it is possible to be a bit more specific about what is meant by the “main 

idea” of a proof. The main idea often lies in the construction of a new, intermediate 

object, called by the author the pivot, to mediate between the hypotheses and the 

conclusion. On the contrary, in the linear approach the pivot is treated poorly (from the 

learner’s point of view) and its potential for revealing the architecture of the proof is 

wasted. On the contrary, it is here where the proof most resembles the pulling of a rabbit 
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from a hat. The pivot is usually introduced near the beginning of the proof by a bare 

statement of its definition, which often appears extremely bizarre and complicated. Such 

definitions have an intimidating, even paralyzing, effect on many students when 

introduced too abruptly. 

Another approach studied by Blum and Kirsh (1991), investigated teaching 

students to understand and produce proofs using what they call a preformal presentation. 

In such an approach the teacher leaves out formal details while explaining the overall 

structure of a proof. 

 Another very important issue that has been deeply talked about is the role of the 

teacher in the process of teaching-learning-understanding proofs. Lampert, Rittenhouse 

and Crumbaugh (1994) described, and positively impressed, a class of fifth graders who 

were engaged in group discussion where the context of instruction was such that it was 

possible, as they put it, “for the teacher to step out of the role of validator of ideas and 

enter into the role of moderator of mathematical arguments.” 

 Another teaching experiment conducted with 4th graders (M.G. Bartolini Bussi, et 

al., 1999), in the field of experience of gears, evidenced that, given a suitable sequence of 

tasks and proper teacher guidance, most of the students can produce general, abstract and 

conditional statements about motion in the field of experience of gears and take part in 

the construction of proofs as justifications inside a theory. 

We could conclude with the following citation: 

The introduction of concrete referents into school mathematical activity 
has been debated fro years (Sierpinska, 1995). ‘Realistic mathematics’ 
(Freudenthal, 1983; Treffers, 1978) and the application of the principle 
of ‘operative concept formation’ (Bender and Schreiber, 1980) are an 
expression of a positive attitude. Several reasons are produced to justify 
the recourse to a ‘real’ context: pupils’ motivation to learn geometry; 
the need to establish links between school learning and everyday 
learning; the conceptualization of mathematics as either ‘a language to 
describe and interpret reality’ or as ‘a structure that organizes reality’. 
These are all pedagogical, social or philosophical reasons and each can 
be contrasted with different options. With this exploratory research 
study we hope to have taken a step ahead, illustrating the cognitive 
counterpart of activity with everyday concrete referents (in the case of 
gears) that allows early approach to theoretical thinking. (ibid, p.85) 
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3.  THE CORE OF THE RESEARCH 
 
 

3.1 The core of the research 

Initially, the research was based on the idea to build a cognitive model applicable 

to the analysis and understanding of possible student mechanisms and difficulties related 

to the approach to proofs in mathematical analysis. To this extent the primary goal was to 

explore the creative phase of the proving process (that phase where one looks for or 

builds the hypothesis aimed at justifying or validating the facts proposed by the problem). 

The issue of creativity in the hypothesis creation process led me to read Charles S. 

Peirce’s works and his definition of Abduction: 

 

[…] Abduction is where we find some curious circumstances, which 
would be explained by the supposition that it was a case of a certain 
rule, and thereupon adopt the supposition […] (Peirce 2.624) 
 
 

Therefore, abduction is any creation hypothesis process aimed at explaining a fact. Such 

definition can be schematized as follows: 

 
F fact 
H hypothesis 
If H were true   H → F therefore H is likely. 
 

Furthermore, 
 

The surprising fact C is observed. 
However if A were true, C would be a matter of course. 
Hence, there is reason to suspect that A is true (CP. 5.188-189, 7.202) 
 
 

C is true of the actual world and it is surprising, a kind of state of doubt we are unable to 

account for by using our available knowledge. C can be simply a novel phenomenon, or 

may conflict with background knowledge that is anomalous. 
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Taking into account Peirce’s definition of abduction, the questions that initially 

guided the first steps of the research project, were: 

1. When do students use abduction in proving processes? 

2. If they use abduction, how do they use it? Is there a context in which they 

utilize it more than another? 

The subsequent step was to give two different problems at two different periods of 

the semester to a group of students attending freshman year of an engineering degree. 

Problem 1: Let f be a function continuous from [0,1] onto [0,1]. Does this 

function have fixed points? (Note: C is a fixed point if f(c)= c) 

Problem 2: Given f differentiable function in R, what can you say about the 

following limit? 
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A first attempt of an a-priori analysis of the aforementioned problems quickly 

unearthed some difficulties in predicting possible student creative mechanisms. Initially 

the origin of such problems was not obviously apparent, but it was clear to see that the 

definition of abduction, as given by Peirce, was not sufficient to frame and analyze 

potential student creative processes. 

After a deeper structural analysis of both problems I found the source of such 

uneasiness to be the manner in which Peirce’s abduction referred to the creation of a 

hypothesis that could explain an observed fact.11 

On the contrary, problem 1 contains a closed-ended question, which means a 

respondent can select from one or more specific categories to give the answer (in this 

specific case, student can choose between “Yes, the function has a fixed point”, or “No, 

the function does not have a fixed point”). 

Problem 2 is an open-response task, which means a performance task12 where 

students are required to generate an answer rather than select it from among several 

                                                 
11 In an abductive process a “starting fact” is always considered and it is always true. 
12 A performance task is an exercise that is goal directed. The exercise is developed to elicit students’ 
application of a wide range of skills and knowledge to solve a complex problem. 
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possibilities, but where there is a single correct response (definition taken from NCREL: 

North Central Regional Educational Laboratory). 

In both cases the reader is confronted by a problem with a direct question, which 

means the solver not only has to find hypotheses justifying a fact, but also has to look for 

a fact to be justified. In conclusion, among the problems given to the students, there is not 

a fact already observed and definitely true. This particularity generates the need to 

analyze the abductive processes under a new light, in the sense that the nature of the fact 

and the connections between hypothesis and fact have to be considered in a different way 

than the manner proposed by a standard abductive process. 

To clarify what I mean about this difference, let us take into consideration the 

following example given by Peirce: 

 

For example, fossils are found; say, remain like those of fishes, but far 
in the interior of the country. To explain the phenomenon, we suppose 
the sea once washed over this land. This is abduction. (Peirce, 2.624) 

 

In this case the truthfulness of the fact is independent to the truthfulness of the 

hypothesis built to explain the fact; if the hypothesis, at a certain point, turns out to be 

false, this will not change the status of the fact, namely, the fossils would still remain “far 

in the interior of the country.” 

Therefore, in the problems considered in the experimentation, both hypothesis and 

fact may take the aspect of conjecture, which Webster’s 1913 Dictionary defines as, “an 

opinion or judgment, formed on defective or presumptive evidence; probable inference; 

surmise; guess; suspicion. 

Having arrived at this point it is necessary to clarify which meanings of the words 

fact and hypothesis will be adopted in this work. 

In terms of the word ‘hypothesis’, Aristotle has already used this word meaning 

‘hypothesis of a theorem,’ but Archimedes (in The Arenaria) tested a ‘hypothesis’ as 

related to physic reality, implicitly changing the sense of the word with respect to 

Aristotle (Boero et al., 1995). Today, the word ‘hypothesis’ covers a wide range of 

meanings. For example, in Collins Dictionary: a hypothesis is an idea that is suggested as 



 83

a possible explanation for a particular situation or condition, but which has not yet been 

proved to be correct. Whereas, in Webster’s Dictionary we find: (1) a supposition; a 

proposition or principle which is supposed or taken for granted, in order to draw a 

conclusion or inference for proof of the point in question; something not proved, but 

assumed for the purpose of argument; (2) a system or theory imagined or assumed to 

account for what is not understood; (3) the antecedent clause of a conditional statement. 

Henceforward, the word ‘fact’ will be defined as: referring to something as a 

‘fact’ means to think it is true or correct. Whereas ‘hypothesis’ will stand for: an idea 

that is suggested as a possible explanation for a particular situation or condition. While, 

hypothesis, in the Aristotelian sense (i.e.: hypothesis of a theorem), will be substituted by 

the term ‘given.’ Such a choice is motivated by the interest of the research that deals with 

the creative aspects of a cognitive process and not, for example, with the formal 

rearrangements of a proof. 

Let us go back to the terms ‘hypothesis’ and ‘fact’ related to the aforementioned 

problems. As stated, both may take the aspect of conjecture; the former is a conjecture 

with the role of hypothesis meant as possible explanation; the latter is a ‘conjectured fact’ 

(in the sense that it could reveal itself to be untrue) in terms of the role of final answer to 

the problem, or answer to certain steps of the solving process. This kind of fact will be 

indicated with ‘c-fact’ to distinguish it from the standard fact (as defined by Collins’ 

Dictionary). 

The tenet of abduction has also been confronted by Cifarelli part of whose 

research is concerned with the relationships between abductive approaches and problem-

solving strategies. The purpose of his work is to clarify the processes by which learners 

construct new knowledge in mathematical problem solving situations, with particular 

emphasis on instances where the learner’s emerging abductions or hypotheses help to 

facilitate novel solution activity (Cifarelli, 1999. The basic idea is that an abductive 

inference may serve to organize, re-organize, and transform a problem solver’s actions. 

The following example given by Cifarelli (in “Abduction, Generalization, and 

Abstraction in Mathematical Problem Solving,” 1998) may highlight the core of his 

work: 
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Marie is a student who was given a set of algebra word problems, 
designed by Yackel (1984) to induce problematic situations.  
Marie had to solve the first problem involving the depths of two lakes, 
and then she was asked to solve eight follow-up tasks, each a variation 
of the original problem. The problems were designed in such a way to 
have a range of similar problem solving situations and hence develop 
ideas about “problem sameness” in the course of her on-going activity. 
The third problem had insufficient information; initially, Marie guided 
by the sameness of the problem tried to solve it in the same way she 
had solved the previous two; very soon she realized that it was not 
possible and that became for her a novel situation. The abduction took 
place at this point, namely Marie needed to find an explanation of her 
failure. 
<<…The same way (she smiles, then displays a facial expression 
suggesting sudden puzzlement) impossible!! It strikes me suddenly that 
there might not be enough information to solve this problem (she re-
reads and reflects on her work) I suspect I’m going to need to know the 
height of one of these things (solver points to both containers in her 
diagram). I don’t know though, so I am going to go over here all the 
way through>> 
 
 

Applying Peirce’s logic structure, Marie’s abductive process would be translated in the 

following way: 

 

F: impossible (namely, the failure of the solving strategy Marie had thought to use) 

H: there isn’t enough information to solve the problem 

If H were true H → F    therefore H is plausible 

 

Therefore, the fact is represented by a failure and the abduction is the search of an 

explaining hypothesis to such a failure. 

Cifarelli’s analysis of Marie’s process is as follows: 

Marie’s anticipation that “the same way” would not work was followed 
by her abduction that the problem did not contain enough information, 
later refined to the hypothesis that she needed more information about 
the relative heights of the unknowns. While the hypothesis contained 
elements of uncertainty, it helped organize and structure her subsequent 
solution activity, whereupon she explored and tested its plausibility as 
an explanatory device.    (p.7). 
 

 Cifarelli’s attention is focused on the abductive inference as a tool to enhance the 

search for further strategies when the application of a previous solution does not work. 
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The hypothesis of the absence of enough information leads Marie to go through the 

problem again to verify the plausibility of her hypothesis, and then to construct the 

necessary data to solve the problem. Therefore, the researcher is not interested in the 

“typological aspect” of abduction, but in the role such a process plays on the problem-

solving activities. 

 Returning to the analysis of the “typology” of abduction, I am intrigued by 

Cifarelli’s extension of the concept of fact: in Peirce’s abduction the fact is a tangible 

observation: the fossils far in the interior of the country, the white beans on the table, and 

the documents talking about Napoleon; according to Cifarelli the fact may also be 

represented by something that happens (e.g., the failure of a strategy). This new point of 

view gives me the impetus to reflect on a new interpretation of the typology of abduction, 

where the fact is also represented by a strategy / procedure or regularity. 

Recapitulating, Peirce’s definition is insufficient according to my research into the 

analysis of the cognitive creative processes, and it leads me to consider the case where 

both fact and hypothesis are conjectures. Furthermore, Cifarelli suggests to me the idea of 

looking at the typology of “ conjectured-fact” as a procedure. 

Hence, the situations we can meet are: 

1. The subject experiences a given fact (it is already true) and looks for a hypothesis 

that may explain the fact (Peircean situation) 

2. The subject gives an answer (fact or conjectured-fact) and looks for a hypothesis 

that may legitimate or explain the answer or fact. 

3. The subject gives an answer (a fact or conjectured-fact) and looks for a strategy 

that may legitimate or explain the answer or fact. 

4. The subject gives an answer (a fact or conjectured-fact) consisting of an already 

known strategy applied by him to a novel situation, and looks for tools that may 

legitimate such an adaptation. 

 

As a consequence of these new considerations about abductive processes, the research 

questions can be modified as follows: 
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1. Are the definitions of abduction, already given, sufficient to describe creative 

processes of an abductive nature? Or, is a broader definition of abductive process 

needed to describe some creative students’ processes in mathematics proving? If 

so, what is that definition? 

2. Is one’s certainty about the truth of an assumption an indication for an initiation of 

abductive reasoning in her or his process? Namely, how much is important the 

level of confidence of the built answer to guide an abductive approach?  

3. Is there continuity between the cognitive “tool” one uses to build a conjecture and 

the means one uses to establish its validity?  

4. Which elements convey an abductive process? In particular, does transformational 

reasoning facilitate an abductive process? 

 

At this point it is necessary to ask the question, “ What links these research questions 

with Peirce’s work? The common denominator is the philosophic spirit on which both 

works are based. The core idea is the intention to show that the creative process owns 

some components, and to separate this process from the belief that it is not possible to 

talk about it because it is something indefinable and only comparable to a “flash of 

genius.” This is the philosophical foundation of Peirce’s work, a man who “…struggled 

over more than fifty years to lay bare the logic by which we get new ideas” (Fann, 1970). 

Peirce wanted to legitimate the fact that abduction is a kind of reasoning along with 

deduction and induction, and he was willing to show that “…reasoning towards a 

hypothesis is of a different kind than reasoning from a hypothesis” (ibid.), in 

contraposition with other philosophers like Popper who claimed that “…the initial stage, 

the act of conceiving or inventing a theory, seems to me neither to call for logical 

analysis nor to be susceptible of it” (Popper, 1959). Many philosophers regard the 

discovery of new ideas as mere guesswork, chance, insight, hunch or some mental jump 

of the scientist that is only open to historical, psychological, or sociological investigation. 

The attempt of this research is to build a cognitive model that will help to recognize 

creative processes. 
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3.2 The Abductive System 

 According to the initial difficulties of analyzing the problems using only Peirce’s 

definition of abduction, and the new considerations made about tasks requiring not only 

the construction of a hypothesis but also of the answer, I have constructed new 

definitions and tools which have been employed in the analysis of the protocols. 

 I define the Abductive System as being a set whose elements are: facts, 

conjectures, statements, and actions: AS = {facts, conjectures, statements, actions}. 

For fact I adopt the definitions of Collins’ Dictionary: (1) referring to something 

as a fact means to think it is true or correct; (2) facts are pieces of information that can 

be discovered. 

For conjectures I adopt the definition given by the Webster’s dictionary: 

conjecture is an opinion or judgment, formed on defective or presumptive evidence; 

probable inference; surmise; guess; suspicion.  

 

The conjectures assume a double role of: 

1. Hypothesis; an idea that is suggested as a possible explanation for a 

particular situation or condition. 

2. C-Fact (conjectured-fact); final answer to the problem, or answer to 

certain steps of the solving process. 

 

Facts and Conjectures are expressed by statements divided into the three following 

categories: 

1. Stable statements 

2. Unstable statements 

3. Abductive statements 

A stable statement is a proposition whose truthfulness and reliability are guaranteed, 

according to the individual, by the tools used to build or consider the fact or conjecture 

described by the proposition itself. Namely, the truthfulness depends directly on the tools 

employed in the construction phase (E.g. a “visually-based” fact: the validity of the 

proposition describing the phenomenon is justified by a visual perception). 
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An unstable statement is a proposition whose truthfulness and reliability are not 

guaranteed, according to the individual, by the tools used to build or consider the 

conjecture described by the proposition itself. Namely, the tools used in the creation 

phase are not sufficient for the solver to consider the conjecture described by the 

proposition as being definitively true. The consequence of this is the search of a 

hypothesis and or an argumentation that might validate the aforementioned statement. 

An abductive statement is a proposition describing a hypothesis built in order to 

corroborate or to explain a conjecture. The abductive statements too, may also be divided 

into stable and unstable abductive statements. The former, according to the solver, state 

hypotheses that do not need further proof; the latter require a proof to be validated, that 

means a process that brings back and forward. 

An abductive statement may present different structures: 

1. It describes a hypothesis to justify a conjecture. 

2. It describes a procedure to justify a conjecture. 

3. It describes tools to justify a procedure. 

It is important to clarify that the definitions of stable13 and unstable statement are 

student-centered, namely, the condition of stable and unstable is related to the subject: 

what can be stable for one student may represent an unstable statement for another 

student and vice versa; not only that, but the same subject may believe stable a particular 

statement at a certain point of their scholastic career, and this may become unstable later 

on when their base cultural knowledge of structured mathematical knowledge increases 

(e.g.; she or he learns new mathematical systems; new axioms and theorems). 

Furthermore, a stable statement may become unstable, inside a similar problem solving 

                                                 
13 The concepts of stable and unstable are related, moreover, to the mathematical context. In Euclidean 
Geometry if a statement is stable, the problem will be only to find the tools to prove it. Namely, in 
Euclidean Geometry it is enough to find few variations of “targeted” drawings to guarantee the stability of 
a statement. In Arithmetic the problem is more complex; it is sufficient to think of Goldbach’s conjecture. 
Goldabach’s original conjecture (sometimes called the “ternary” Goldbach conjecture), written in 1742 in a 
letter to Euler, states “at least it seems that every number that is greater than 2 is the sum of three primes”. 
Note that here Goldbach considered the number 1 to be prime, a convention that is no longer followed. As 
re-expressed by Euler, an equivalent form of this conjecture (called the “strong” or “binary” Goldbach 
conjecture) asserts that all positive even integers ≥ 4 can be expressed as the sum of two primes. Not only a 
proof has not been found yet, but also, even though many millions of even numbers have satisfied such 
property, we are still not sure of its validity. 
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process, not because the student is convinced of that, but for a “cultural contract”; 

namely, the student may recall their scholastic experience and remember that a statement 

is considered stable if it is justified inside a precise mathematical system supported by 

axioms, and theorems; thus they will analyze the tools employed for verification if they 

satisfy such conditions. Another situation leading the student to reconsider a statement 

from stable to unstable is the “didactical contract”; the subject might believe the visual 

evidence to be sufficient in order to justify a conjecture, but the intervention of the 

teacher could underline its insufficiency and therefore the students would find themselves 

looking for new tools. Furthermore, the same statement may transform from unstable to 

stable inside a similar process because the subject follows the mathematician’s path: they 

starts browsing just to look for any idea in order to become sufficiently convinced of the 

truth of their observation, then they turn to the formal-theoretical world in order to give 

to their idea a character of reliability for all the community (Thurston, 1994). 

The following example, taken from Harel’s Proof Schemes work, seeks to clarify part 

of this tension: 

[…] Further, a person can be certain about the truth of an observation 
in one situation, but seek additional or different evidence for the same 
observation in another situation. For example, long before students 
learn geometry in school, they are convinced, based on personal 
experience and intuition, that the shortest way to get from one point to 
another is through the line segment connecting two points. Later, as 
participants in an Euclidean geometry class, an instantiation of this 
observation - stated in the theorem “The sum of the lengths of two sides 
of a triangle is greater than the length of the third side” – may become a 
conjecture for the students until they find evidence that would be 
accepted by their class community or their teacher. The kinds of 
evidence the students may look for are based on whatever conventions 
are accepted in their class as evidence for a geometric argument. These 
conventions may differ from one class to another; for example, what 
might be accepted as evidence in a standard high school Euclidean 
geometry class is likely to be insufficient evidence for a college class 
studying axiomatic geometry. (p. 243) 

 
Behind any statement there is an action. Actions are divided into phenomenic actions 

and abductive actions. A phenomenic action represents the creation, or the “taking into 

consideration” of a fact or a c-fact: such a process may use any kind of tools; for 

example, visual analogies evoking already observed facts, a simple guess, or a feeling, 
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“that it could be in that way”; a phenomenic action may be guided, for example, by a 

didactical contract or by a transformational reasoning (Harel, 1998). 

An abductive action represents the creation, or the “taking into account” a justifying 

hypothesis or a cause; like the phenomenic action, they may be conveyed by a process of 

interiorization (Harel, 1998), by transformational reasoning (ibid) and so on. The 

abductive actions may look for: 

1. A hypothesis, to legitimate the previous met or built conjecture 

2. A procedure, to legitimate or justify the previous built conjecture 

3. Tools to legitimate the adaptation of an already known strategy to a novel 

situation. 

After a broad description, the Abductive System could be schematized in the 

following way: conjectures and facts are ‘act of reasoning’ (Boero, 1995) generated by 

phenomenic or abductive actions, and expressed by ‘act of speech’ (ibid) which are the 

statements. The adjectives stable, unstable, and abductive are not related to the words of 

the statements but to the acts of reasoning of which they are the expression. Hence, the 

only tangible thing is the act of speech, but from there we may go back to a judgment 

concerning the act of reasoning thanks to the adjectives given to the statement. 

Finally, for two different subjects the same statement may be stable or unstable. 

Therefore, two persons may achieve the same act of reasoning and judge it by a different 

method. 
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The following chart shows the structure of the Abductive System 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The Abductive System 
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4.  METHODOLOGY 
 
 

4.1 Site and Participants 

The study is a basic research14 and its purpose is to build a model to identify and 

account for possible cognitive processes students implement when they perform 

conjectures and proofs in Calculus, specifically a cognitive model that will help to 

recognize creative processes. 

The data has been collected at the University of Industrial Engineering and 

Management of Genova (Italy) during the academic year 2001-2002, and the participants 

are freshmen enrolled in required calculus classes for engineers. The courses cover 

differentiation and integration of one-variable functions as well as differential equations. 

The student participants are 18 or 19 years old.  There are two main reasons for choosing 

to work with this population: 1) My working experience is with students of this age; 2) 

The approach of the university frequently revealed a very delicate and difficult issue, 

since the “cultural and didactical reality” the students come in contact with at the 

university is markedly different from their experiences in high school.  This gap, in many 

cases, seems to be critical for the mathematical development of these students. The 

university approach demands more autonomy in facing mathematical problems. This 

approach asks students to participate in autonomous work in the creation of hypotheses, 

conjectures and implement a sense of critique in evaluating their own actions in the 

problem solving process; such a request seems to cause to the students several important 

problems, suggesting their creative abilities had been lost during their scholastic career. 

At the beginning of the Calculus course the teacher introduced me to the students 

as a Teacher Assistant, working once a week with them in class for a session of three 

                                                 
14 The purpose of basic research is knowledge for the sake of knowledge. The basic researcher’s purpose is 
to understand and explain. The most prestigious contribution to knowledge takes the form of a theory that 
explains the phenomenon under investigation. (Patton, 1990) 
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hours, during which the students would solve problems proposed by me, and they would 

be able to discuss possible problems raised by them. During the week, the students would 

be able to come to my office for further explanations about topics discussed in class, or 

about exercises solved autonomously.  

The students’ participation at the lessons was not mandatory, and there was not 

any relation between their participation and the result of the final exam, since the teacher 

would never know who followed the lessons and who did not. 

Having established my main role (namely, the one described above), I later asked 

the students if someone was interested in taking part in a research project, which was 

related to my doctoral thesis. I clarified that such participation would not be mandatory, 

and that there would not be any relationship between their consent and the results of their 

final exams. I explained that the purpose of my study would be to look for possible 

creative processes during the problem-solving phase; and to this extent I would give the 

participants in the project some tasks to solve, and they would be videotaped, and that I 

would participate in some lessons given by the teacher in order to gather field notes. 

The choice of the classroom participants (about one hundred students) was 

completely left to this group of students and was therefore totally random; my only 

concern being that the sample would be heterogeneous from the point of view of both 

culture and ability; but this could be monitored since I was constantly in contact with the 

students. 

4.2 Data Collection 

The data was collected through the following sources: 

a) One questionnaire, distributed to all of the students (about one hundred) of the 

classroom; the questionnaire was anonymous, and composed of the following questions: 

 

 

1. CHECK THE FORMS OF REASONING YOU KNOW 

� Induction 

� Deduction 

� Others. Which ones? 
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2. AS A STUDENT, DO YOU CONSIDER THE STUDY OF PROOFS TO BE 

NECESSARY? 

� Yes. Why? 

� No. Why? 

� Sometimes. When? 

3. WHICH KIND OF RELATIONSHIP LIES BETWEEN HYPOTHESIS AND THESIS 

IN THE CONSTRUCTION OF THE STATEMENT OF A THEOREM? 

� The hypothesis always comes before the thesis. Why? 

� The thesis always comes before the hypothesis. Why? 

� Depends (Justify it) 

4. FOR EACH THEOREM DO YOU THINK THAT THERE EXISTS ONLY ONE 

CORRECT PROOF? 

� Yes. Why? 

� No. Why? 

5. THE CONSTRUCTION OF A PROOF HAS TO FOLLOW A FIXED PATTERN. 

CREATIVITY CANNOT FIND ROOM IN THE CONSTRUCTION OF PROOFS. 

� True. Why? 

� False. Why? 

Note: for the following question it is possible to choose more than one answer 

6. A PROOF IN CALCULUS HAS THE FOLLOWING ROLE(S) 

� Convince someone of the validity of a statement 

� Explain why a statement is valid 

� Establish the validity of a statement 

� Other (specify) 

 

The purpose of the questionnaire is to investigate what kind of “culture of proof” 

students own; and what conceptions and misconceptions they have about this issue, in 

order to understand the kind of cultural background owned the potential participants at 

the research project. 

What I am interested in is the idea students have about the construction of proof, 

its use and role also from a didactical point of view, and how their “scholastic 
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experience” may have influenced and changed the way they think of proof and how they 

think of themselves in relationship with the construction of a proof. 

The first question is just a survey tool to check which forms of reasoning students 

are familiar with, and whether they define or recognize forms of reasoning other than the 

inductive and deductive ones. 

The second question is designed to investigate what kind of “mental attitude” 

students approach a proof with, if they tackle the construction of a proof just because 

they are told to do so by the teacher, or if there is a sort of curiosity and a conviction 

about its necessity. The “why” question is designed to examine what kind of influence 

school could have had in students’ opinion about such an issue. 

Question number 3 attempts to discover and analyze students’ conceptions about 

the structure of a proof. Very often students are involved in dealing with “ready made” 

proofs; their first experience with such proofs usually represented by the presentation of 

the statement of a theorem followed by a well structured proof, meant as a chain of 

deductive steps, one following the previous one, supported by axioms or previously 

proved properties or theorems. Very often, mathematician’s cognitive processes, 

employed to generate such a proof, are an alien topic for the students themselves. 

Unfortunately, this means that students very seldom have the opportunity to deal with a 

“proof in progress.” On the contrary, they usually have experience with the kind of 

didactical contract that sees the teacher as the only source of truth, and the one who 

simply transfers some pre-constructed knowledge to the class.  

In a similar manner, questions 4 and 5 aim to understand the ideas, regarding 

proofs, students have constructed during their scholastic careers. The question also seeks 

to determine if they think it is possible for any theorem to have just one correct proof, or 

if they do not relate creativity and personal initiative with the process of constructing a 

proof, because over time they only experience the final product of the proof. If so, we 

may interpret their difficulty in their approach to the proving process and their reluctance 

to tackle an open problem because they just wait for somebody tells them how to 

proceed. The final question is critical because it is fundamental in attempting to 
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understand which role students give to a proof, because it is this idea that leads their 

predisposition toward the construction of the proof. 

Briefly, from the analysis of the questionnaire most of the students think of proofs 

as a tool to better understand theorems, their meaning, and the reasoning involved into 

the process of proving. The remaining part is mainly concerned with the idea that proofs 

are necessary because they validate the problem and convince of its validity, or as a tool 

useful to solve problems, to create mental schemes to be used in problem-solving, 

furthermore they explain the why of a fact, and finally they make a context clearer, and 

easier to be remembered. Furthermore, the totality of the students agrees with the fact that 

there may exist more than one correct proof for the same theorem. Finally, creativity 

seems to be an important component for the construction of a proof. (A complete analysis 

of the questionnaire can be found in Appendix A). 

b) Two different exercises given, at two different periods of the semester, to the 

participants in the project (twenty students took part in the project). In the problem 

solving phase the participants were asked to work in pairs (leaving to them the decision 

about whom to work with); the choice of making them work in pairs was motivated by 

the conviction that the necessity of “thinking aloud” to communicate their own ideas 

gives the opportunity to bring to light guessing processes, creations of conjectures and 

their confutations, namely those creative processes which in great part remain “inside the 

mind” of the individual when one works alone, and very often only the final product is 

communicated to the others (Thurston, 1994; Lakatos, 1976; Harel, 1990; et al.). 

It is important to note that the participants were not asked to produce any particular 

“structured” solution; my aim being to leave the students completely free to decide their 

solution process and to autonomously evaluate the acceptability of their solution for the 

learning community. 

Problem 1: Let f be a function continuous from [0,1] onto [0,1]. Does this function have 

fixed points? (Note: C is a fixed point if f(c)= c) 

 

At the time the students were given this problem they had already been exposed, in 

the curriculum, to the theory of the continuous functions, with related theorems, but they 



 97

had not previously seen the definition of fixed point. This problem contains a close-ended 

question, which means respondent can select from one or more specific categories to give 

the answer (in this specific case, student can choose between “Yes, the function has a 

fixed point” or, “No, the function does not have a fixed point”). 

 

Problem 2: Given f differentiable function in R, what can you say about the following 

limit? 
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At the time this exercise was proposed, the students have been exposed to the 

definition of differentiable function through the limit of the difference quotient. Problem 

2 is an open-response task, which means a performance task15 where students are 

required to generate an answer rather than select it from amongst several possibilities, but 

there is a single correct response (definition taken from NCREL: North Central Regional 

Educational Laboratory). 

In both cases the reader is confronted by a problem with a direct question, which means 

the solver not only has to find hypotheses justifying a fact but also identify a fact to be 

justified. 

The aim of these exercises is to confront the students with the necessity to produce 

conjectures, to prove their validity or refute them, namely to use their own creative 

processes in order to produce facts, conjectures and hypotheses. 

Throughout the process of both problems the students have been videotaped. 

c) Videotape of a lecture given by the teacher. The aim of the collection of this data is to 

study the behavior of the teacher during the didactical transposition, and observe the 

relationship between the “cognitive attitude” of the teacher and that of his students. 

                                                 
15 A performance task is an exercise that is goal directed. The exercise is developed to elicit students’ 
application of a wide range of skills and knowledge to solve a complex problem. 
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4.3 Data Analysis 

 The analysis of the protocols is based on the analysis of the text (which has been 

transcribed verbatim from the videotape) with the aim of looking for possible structures 

in the dialogue indicating creative processes, meant as the processes of creation of facts, 

hypotheses and conjectures. 

From the analysis of the dialogue I want to find which kinds of reasoning enhance 

a creative attitude. Besides the analysis of the text, I want to analyze what the students 

have produced in their protocols, in order to look for possible relationships among the 

various languages: from the graphic language, iconic and algebraic, and the process of 

creation of hypotheses, conjectures and facts. 

 Therefore, I want to understand how students make sense of mathematical 

symbols, in which ways they interact with icons and graphs in order to create hypotheses, 

conjectures and facts. 

The analysis of the protocols is divided into two phases. The first phase shows a 

comprehensive description of students’ behaviors in tackling the problem; in the second 

phase the creative processes are detected and interpreted through the elements of the 

abductive system. 

 The videotape is a tool in the triangulation of the data; it gives the opportunity of 

going over any dialogue students have engaged in during the problem solving process. In 

the same way, the analysis of the transcript of the lecture given by the teacher is aimed at 

examining the structure of the teacher’s dialogue, indicating creative processes, and to 

compare these with the attitudes observed in the students. 

 My theoretical framework is based on the notion of Symbolic Interactionism. 

Jacob (1987) states that the focus of Symbolic Interactionism is to understand the 

processes by which points of view develop. And such a tradition provides models for 

studying how individuals interpret objects, events, and can be utilized for studying how 

this process of interpretation leads to certain behavior in specific situations. 
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 Concerning the analysis of the data: Content Analysis16 has been adopted, in the 

sense that Content Analysis is the process of identifying, codifying and categorizing the 

primary patterns in the data (Patton, 1990). 

                                                 
16 Content analysis is the process of identifying, codifying, and categorizing the primary patterns in the 
data. This means analyzing the content of interviews and observations. (Patton, 1990) 
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5.   ANALYSIS OF THE DATA 

 
 

5.1 Analysis of the protocols 

The analysis of the protocols is based on the analysis of the text (which has been 

transcribed verbatim from the videotape) with the aim of looking for possible structures 

in the dialogue indicating the creative processes, those of the creation of facts, hypotheses 

and conjectures. Besides the analysis of the text, I want to analyze what the students have 

produced in their protocols, in order to look for possible relationships among the various 

languages: from the graphic language (iconic and algebraic), and the process of creation 

of hypotheses, conjectures and facts. The analysis of the protocols is divided into two 

phases:the first phase shows a comprehensive description of students’ behaviors in 

tackling the problem; the second phase illustrates how the creative processes are detected 

and interpreted through the elements of the abductive system. 

Tables divided into two columns represent the structure of the second phase of the 

analysis; the left column is used to write the excerpts considered relevant to the creative 

processes; while the right column has been used to write the interpretation of the excerpts 

through the tools of the abductive system; furthermore the vertical arrows linking one 

excerpt to another describe the possible cognitive movement leading from one statement 

to another one. Let us revisit the text of the two problems: 

 

Problem 1: Let f be a function continuous from [0,1] onto [0,1]. Does this function have 

fixed points? (Note: C is a fixed point if f(c)= c) 

 
Problem 2: Given f differentiable function in R, what can you say about the following 

limit? 
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5.1.1   Marco and Matteo (fixed point problem) 

 The first step is represented by the statement: “the function probably has a fixed 

point”. This consideration seems to be generated by a mechanism of didactical contract, 

namely, if the problem asks such a question…it follows that the answer is affirmative…. 

 The aforementioned act of reasoning is expressed by an unstable statement, in the 

sense that Matteo and Marco do not consider the request of the existence of a fixed point, 

a sufficient reason to legitimate what they have claimed. Hence we can define it a c-fact, 

because it plays the role of final answer to the problem but the subject is not sure of its 

truthfulness. 

 At this stage the attention shifts backwards: before looking for a hypothesis 

justifying the presence of a fixed point, Marco and Matteo try to understand which the 

fixed points are and how they can be found; the core of the problem now becomes to 

identify and explicate the properties of the set of the fixed points; they need to create a 

cultural background, meaning a theory supporting the creation of the hypothesis. 

R7: Matteo: How can we find this fixed point? 

This is the phase of the construction of a theory aimed at the creation of the 

hypothesis; namely, “if we can understand how the fixed points are made and how we 

can find them, then we will be able to create a hypothesis that might justify the presence 

of fixed points.” 

They try to understand which ones are the fixed points, and they say:  

R8: a fixed point is here, another one is here… (see Figure 7) and they arrive at the 

conclusion that the fixed points lie on the bisector line. 

 
 

Figure 7: Representation of the fixed points 
 

Then 
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The construction phase of a possible theory is characterized by a graphic 

exploration. The graphic aid comes into this: Marco and Matteo, led by the squares on the 

paper, start identifying the fixed points with ones of the vertexes of the squares, because 

they satisfy the condition to have the same coordinates, and from the visualization in the 

discrete they go to the continuous, hypothesizing that if it is valid on the visible vertexes, 

it will be valid for all the “sub-squares” which is made by. Marco and Matteo have the 

following definition of fixed point: (c, f(c)) with f(c) = c; therefore c is the “x” and f(c) is 

the “y”. The subsequent step is represented by their statement that the fixed points are the 

ones that have “the x equals y” and the y represent it graphically as vertexes of the square 

of the paper. The idea that the point has the same coordinate allows Marco and Matteo to 

sign them on the vertexes of the square of the paper. Therefore, the idea is translated in 

sign, such a sign potentially allows a new step, it suggests visually the passage from 

discrete to continuous…they probably realize, thanks to a visual factor, that between the 

square represented by the first square of the paper and the second one there are other 

infinite squares whose vertex will represent a fixed point. Therefore, they draw the line 

connecting these points; always working graphically they realize that what they have just 

drawn is the bisector line of the I and III orthant and therefore there is a shift to the 

interpretation of the fixed point represented by the passage from f(c)= c to y = x (again 

the sign is source of thought, a dynamic that goes from outside to inside). There is an 

identification of the set of the fixed points with the bisector line of the I and III orthant. 

Therefore in the passage from the discrete to the continuous the graph becomes a 

source…meant as a new source of thought. 

 We could schematize these steps as follows: 

• The vertexes of the visible squares of the paper sheet represent fixed points 

• Among the visible squares there are infinite other squares:  

 

 

 

 

 

Consideration of a fact
corroborated by a sub-intended
hypothesis, namely “the space
between the squares is not empty”;
hypothesis that seems not to need
further proofs of its validity.

Then 
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• There are infinite vertexes representing fixed points, and a line can link these 

points 

 

 

 

 

• Visually I realize that such line is the bisector line of the I and III orthant. 

 

At this point Marco and Matteo, in their theoretical background, own the following 

notions: 

1. The set of the fixed points is the bisector line   (built by the student) 

2. Function f, continuous in [0,1] onto [0,1]   (given of the problem) 

3. Continuous function means that there are no gaps in the interval [0,1] (students’ 

built conception) 

As we can understand from the following excerpt: 

R10: Matteo: I would say yes…I would say that the fixed points are on…y = x…and if 

our function must assume all the value of the image in such a way if it is continuous it 

must go through this line…there will be a point for sure… 

The graphic representation leads to state that there is an intersection with the bisector 

line. 

The situation so far is schematized as follows: 

1st STEP: the function has fixed points    (if the problem asks it…didactical contract) 

2nd STEP: the set of the fixed points is the bisector line    (built by the student) 

3rd STEP: the function intersects the bisector line.  

The act of reasoning expressed by the statement “the function intersects the bisector 

line”, takes a complex aspect. It comes out as the consequence of a graphic representation 

of the bisector line and several continuous functions, standing for the answer to a certain 

phase of the solving process; subsequently the statement is re-interpreted and the c-fact 

becomes a hypothesis, meant as possible explanation of the initial conjectured-fact “the 

function probably has fixed points.” 

Then
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The act of speech becomes an unstable abductive statement, because Matteo 

doesn’t think of the visual impact as a sufficiently strong justification to guarantee that all 

the continuous functions in [0,1] intersect the bisector line in the interval. 

Before proceeding with the analysis of the protocol the following observation is needed: 

in the first phase it has been said that the act of reasoning represents a c-fact, relating its 

“instability” to that one considered when the act of reasoning takes the role of hypothesis, 

nevertheless, we do not have to ignore the hypothesis that if the act of reasoning had been 

stopped at the first step, the visual impact could have been enough for Matteo and Marco, 

and then the act of reasoning would have been expressed by a stable statement. 

The subsequent step is to prove the validity of the hypothesis “gr(f) ∩ b ≠ ∅”. In 

the proving phase Matteo and Marco use the proof by contradiction; such a strategy is 

probably conveyed by the fact that in the lessons immediately prior to the 

experimentation, the students had met this kind of proving approach, and therefore they 

try to use it in the current situation. Furthermore, a proof by contradiction leads the two 

students to work with the existential quantifier ∃, instead of the universal quantifier ∀, 

which may represent an easier argument. Let us take into consideration the following 

excerpt: 

Matteo tries to explain to Marco: 

R16: M: we have to prove that f (x) intersected with y = x is not empty, different to the 

empty set. We have to prove that it is possible to go from here to there without 

intersecting the bisector line, but if a > b taking a as the point where x = 0 and that lies 

on the upper side of the bisector line, b the point where y = 1 and b lies on the lower side 

of the bisector line there must be a point between the two where the x = y…there must be 

for sure and I can do the same thing changing the position of the two points 

respectively…or collocating them at the same height…I have to write it down in formal 

way…(conception of proof as formal proof) (see Figure 8). 
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Figure 8: Matteo’s graphic aid 

 

They try to build an acceptable standard proof and at this point I give them the 

formal definition of continuity with ε and δ. They try for a while but then they go back to 

the proof by contradiction. 

Now there is a shift that moves the individual argumentation process (a dialogue inside 

the self) towards an audience. I think it is still an “ascertaining” phase and not 

“persuading.” The communication toward the other person seems to be a new tool to 

make argumentative inquiry; namely, Matteo is trying to explain to Marco his own point 

of view, in doing so I think he is trying: 

• To shed more light on his own argumentative process 

• To find in his interlocutor assistance to overcome an impasse in which he, Matteo, 

seems to be.  

Therefore, Matteo reformulates the fact previously stated: “we have to prove that f (x) 

intersected with y = x is not empty”. 

On the graph he visualizes the two points (0,a) with 0 < a ≤ 1 and (1,b) with 0 ≤ b <1 

underlining that the first point lies on the upper side of the bisector line and the second 

point on the lower side (important, because this implies that the bisector line “interferes” 

with the graph of f(x)). 

R17: Matteo: by contradiction we take ‘a’ that is greater and ≠ 0 and ‘b’ minor, now we 

say by absurd it doesn’t go to, at this point ‘a’ will take in this point here any point in the 

middle and that a ≠ y, therefore a point in which y > x always because in the first 

instance we said that it was greater therefore y must be greater than x and in this other 
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little point here and here and here it will always be greater strictly greater we arrive here 

where it must be greater than x, at this point we have to take all these points here; its 

value in 1 cannot be less than 1, equal 1 or more than 1 because it must stay in this 

interval here, therefore  it is absurd. (Figure 9) 

 

  

 

 
 

Figure 9: Matteo and Marco’s graphic attempts 

In the proving phase it is possible to identify a further creative movement. Adopting the 

approach of the proof by contradiction, the hypothesis to be proved becomes: gr(f) ∩ b = 

∅. This occurs through the graphic representation and the use of transformational 

reasoning (Harel), meant as the ability of reasoning dynamically on the graph of the 

function, and of anticipating the possible results of such graphic-dynamic exploration. 

Matteo arrives at a new act of reasoning expressed by an abductive statement: the graph 

of the function belongs totally to the upper triangle. The aforementioned hypothesis 

would explain why gr(f) ∩ b = ∅. At this stage they use a transformational reasoning to 

prove that having arrived at x=1 none of the following options would be acceptable, y=1, 

y<1, y>1 and this would be an absurdity. 
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The non validity of gr(f) ∩ b = ∅ consolidates the truthfulness of gr(f) ∩ b ≠ ∅ and 

therefore the transformation of “f probably has fixed points” from conjectured-fact to 

fact. 

5.1.2   Analysis through the tools of the Abductive System 

Excerpt Interpretation through the tools 

of the Abductive System 

f probably has fixed points CONJECTURE with role of answer to the problem, 

therefore it is a C-FACT. The C-FACT is created by a 

PHENOMENIC ACTION, guided by a didactical 

contract: “if the problem asks…” The statement 

describing the C-FACT is an UNSTABLE STATEMENT 

because Marco and Matteo don’t believe the 

didactical contract sufficient to validate the 

statement. 

The vertex of the squares on the 
paper sheet represents a fixed point 
 

 
 

FACT created by a PHENOMENIC ACTION. It is 

expressed by a STABLE STATEMENT, in fact Matteo 

and Marco justify it through a visual impact that 

seems to be sufficient 

 
The set of the fixed points is the 
bisector line 
 

 

FACT created by a PHENOMENIC ACTION guided by 

the visual impact and by an unconscious 

consideration of the density of R2. The fact is 

expressed by a STABLE STATEMENT, which is 

justified by: 1) the vertexes of the squares 

represent the fixed points; 2) cognitive jump: 

between two squares there are infinitely many 

others. The visual impact seems to be sufficient. 

 

The search of a justifying 
hypothesis needs the 
construction of a theory. In 
this case: to identify and 
explicate the properties of 
the fixed points. The need 
to broaden the cultural 
background in order to be 
able to build the hypothesis

The graphic 
exploration 
continues 

Now they 
have a new 
property in 
their 
cultural 
background
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The continuous functions in [0,1] 
intersect the bisector line 
 

 
 

In this case we have two different stages. 

First stage: THE ACT OF REASONING is created by a 

PHENOMENIC ACTION guided by a visual impact; and 

it is expressed by a UNSTABLE STATEMENT based on:

1) Continuous function in [0,1] onto [0,1] 
(given of the problem) 

2) Bisector line as set of the fixed points 
(built by the student) 

3) Continuous function in [0,1] means no 
gaps in the interval (student’s elaborated 
conception) 

 

At this point, an ABDUCTIVE ACTION is 

accomplished: the C-FACT is reinterpreted as 

possible HYPOTHESIS corroborating the initial C-

FACT (“the function has probably fixed point”; in 

fact if the function has a common point with the 

bisector line, then this point is fixed). The 

statement becomes an UNSTABLE ABDUCTIVE 

STATEMENT, unstable because Marco and Matteo 

do not believe the three aforementioned 

conditions sufficient to validate the hypothesis 

expressed by the statement. 

Obs.: in the first phase it has been said that the 

act of reasoning represents a c-fact, relating its 

“instability” to that one considered when the act 

of reasoning takes the role of hypothesis. 

Nevertheless, we do not have to ignore the 

hypothesis that if the act of reasoning had been 

stopped at the first step, the visual impact could 

have been enough for Matteo and Marco, and then 

the act of reasoning would have been expressed 

by a stable statement. 

Choice of a proving 
strategy: “proof by 
contradiction”. 
Probably guided by 
a didactical contract, 
because they 
recently saw such 
kind of procedure
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There exists a function continuous on 
[0,1] such that it doesn’t intersect the 
bisector line. 
gr(f) ∩ b = ∅ 
 
 
 
 
 
 
 
 

PHENOMENIC ACTION guided by the structure of the 

proof by contradiction; this action creates a C-FACT 

expressed by an UNSTABLE STATEMENT. 

gr(f) belongs to the upper triangle 
 

 

Creation of a HYPOTHESIS through an ABDUCTIVE 

ACTION guided by a visual impact. The hypothesis 

is stated by an UNSTABLE ABDUCTIVE STATEMENT in 

the sense that Matteo and Marco believe the 

visual impact to be insufficient to validate the 

hypothesis 

 

In Marco and Matteo’s protocol it is possible to find an abductive process both in 

conjecturing and evidencing process. 

5.1.3   Daniele and Betta (limit problem) 

R1: D: x0+h... 

R2: B: f (x0)… 

R3: D: in my opinion it is the same thing… when you do the limit of the difference 

quotient, you do 
h

xfhxf
h

)()(
lim 00

0

−+
→

…this minus this over h… 

 

He signs on the graph the vertical and the horizontal segments (see the red segments in 

Figure 10) 

Graphic 

exploration; 

adoption of 

transformational

reasoning 
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Figure 10: Daniele’s graphic interpretation of 
h

xfhxf )()( 00 −+
 

R4: D: (note: he signs on the drawing done on the protocol, this ⏐ divided by this ⎯) 

R5: B: because f(x0 + h)... 

R6: D: minus f(x0)...is this 

R7: B: Ah…OK…ours would be this (see the red segments in the figure 11) over 2h…it is 

the same thing… 

 

 

Figure 11: Graphic interpretation of 
h

hxfhxf
2

)()( 00 −−+
 

 

R8: D: therefore…it would be h→ 0…how much is this?…eh…it will be the slope of the 

tangent line… 

R9: B: namely…the first derivative 

R10: D: in x0 

Daniele draws a generic function f(x) and he signs on the axis x0, x0+h, x0-h, f(x0), 

f(x0+h), f(x0-h). The first tool he makes use of, is iconic; secondly he observes for a while 
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the sign he produced, and then he says: “…in my opinion it is the same thing”; namely, 

“doing 
h

hxfhxf
h 2

)()(
lim 00

0

−−+
→

 is the same of 
h

xfhxf
h

)()(
lim 00

0

−+
→

…” 

The act of reasoning takes the role of answer to the problem, and it s a c-fact expressing a 

process. The Phenomenic action, which creates the c-fact, seems to be guided by a 

feeling, by a visual impact with the graphic representation that resembles the graphic 

situation met for the limit of the standard difference quotient. 

The visual impact, though, is not sufficient to validate the act of reasoning, which 

represents a c-fact and it is expressed by an unstable statement:“…in my opinion it is the 

same thing”. 

The process follows with the search of a hypothesis validating the c-fact, to this extent: 

a) There is a reinterpretation of the frame used for the standard difference quotient. 

Daniele translates the difference quotient as the ratio of the two segments <<this ⎥ 

divided by this ⎯ >> (see Figure 10) 

b) Such interpretation is shifted to the present situation. Daniele states that the tools 

are the same: 
h

hxfhxf
2

)()( 00 −−+
 is always the ratio between two segments 

(see Figure 11). 

 

In this way the validating hypothesis is created: “the two limits use the same 

tools”. Finally, the abductive action, which allowed the creation of the validating 

hypothesis, brings to a deductive process in the sense that being 
h

xfhxf
h

)()(
lim 00

0

−+
→

= 

f’(x0) and according to the validated fact that 
h

hxfhxf
h 2

)()(
lim 00

0

−−+
→

= 

h
xfhxf

h

)()(
lim 00

0

−+
→

 are the same, then 
h

hxfhxf
h 2

)()(
lim 00

0

−−+
→

= f’(x0). 

This hypothesis has probably also been generated by the kind of function sketched by 

Daniele. The choice of x0 leads to a sort of symmetry related to f(x0); namely, f(x0+h)-

f(x0) and f(x0)-f(x0-h) seem to be two segments of equal length. 

At this point they explain their solution to me: 
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R16: B: this is equal to this (they indicate the two limits…)…we did it graphically (i.e., 

Betta indicates 
h

hxfhxf
2

)()( 00 −−+
 and what they have highlighted graphically) 

R17: D: I mean, we do this…it would be the ratio between this difference ⏐ and this one 

⎯ and in our case it would be the ratio between this difference ⏐ and this one ⎯ , 

therefore, x0 + h –(x0 – h) that would be 2h…and this one that would be f(x0 + h) – f(x0 – 

h)...therefore, the limit for h that goes to zero would be…I mean both go to x0 (note: he 

shows it to me on the graph).  

The validity of their hypothesis is justified graphically, and such a visual impact seems to 

be sufficient. 

At this point I try to provoke Daniele and Betta and to insinuate in them the doubt about 

the adequacy of their graphical justification. 

R21: D: at an intuitive level, yes…but in my opinion it is not a rigorous justification  

R22: I: why? 

R23: D: because if somebody explained it to me in this way…I wouldn’t… 

R24: I: you wouldn’t believe him? 

R25: D: no…I mean…but it seems to me to know it only in this way… 

R26: I: (note: Daniele thinks) 

R27: D: eh yes…anyway it is correct…I mean, the difference quotient would be this 

chord …namely, it would be the tangent line of this angle, right? The difference 

quotient…therefore, for h that goes to zero, this…this chord…shrinks more and more till 

when it becomes a point and it is the tangent line in that point…in this case it is the same 

thing 

R28: I: If you were told in this way…it would be enough for you? Would you be 

convinced if one of your classmates explained it to you in this way? Would you say….ah, 

OK…yes, yes…or would you have some doubts? 

R29: D: we should write it down… 

R30: I: how do you write such a thing? 

R31: D: firstly, if I have an equation and I do the limits of the both parts…it is the same 

thing… 
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Daniele employs again the graphic dynamics since when he tries an algebraic strategy. At 

this point they consider the equation  

h
hxfhxf

2
)()( 00 −−+

 = 
h

xfhxf )()( 00 −+
 

This would justify the equality between the two limits. We have, then, the sub intended c-

fact: 
h

hxfhxf
h 2

)()(
lim 00

0

−−+
→

 = 
h

xfhxf
h

)()(
lim 00

0

−+
→

, and the justifying hypothesis 

h
hxfhxf

2
)()( 00 −−+

 = 
h

xfhxf )()( 00 −+
 is built. 

The consideration of this hypothesis is probably guided by a fact already acquired by 

Daniele and Betta, namely, if f(x) = g(x)  ∀x∈(x0-δ, x0+δ) then    limx→x0 f(x) = limx→x0 

g(x). It follows a series of algebraic manipulations based on an erroneous starting idea, 

namely, Daniele and Betta in proving the equality between the two expressions start 

exactly from 
h

hxfhxf
2

)()( 00 −−+
 = 

h
xfhxf )()( 00 −+

 

R32: B: therefore, if you prove that this is equal to this (namely, 
h

hxfhxf
2

)()( 00 −−+
 

and 
h

xfhxf )()( 00 −+
) 

R33: D: eh…therefore…yes but…I must… it would be 

2
h

xfhxf )()( 00 −+
=

h
hxfhxf

2
)()( 00 −−+

2 

And they simplify in the following way 

2 
h

xfhxf )()( 00 −+
=

h
hxfhxf

2
)()( 00 −−+

 2 

R34: I: but then you have already given for sure that this and this one are equal… 

R35: D: ehm…yes… 

R36: I: no, you have to prove it. I thought you would want to prove that 

h
hxfhxf

2
)()( 00 −−+

 = 
h

xfhxf )()( 00 −+
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R39: D: yes…but you are right! I already thought to be true the equality…then, I looking 

for…no, no… 

 

After some further algebraic manipulations, Daniele goes back to the graph and he 

realizes that the line connecting the points A(x0+h, f(x0+h)) and B(x0-h, f(x0-h)) and the 

one connecting A(x0+h, f(x0+h)) and C(x0, f(x0)) have one point in common; therefore, 

proving the equality between the two difference quotients would mean to prove the 

parallelism between two lines that go through one same point, that is impossible. The 

graphic tool becomes an important means to invalidate the previously built hypothesis, 

namely, the equality: 
h

hxfhxf
2

)()( 00 −−+
 = 

h
xfhxf )()( 00 −+

 

Daniele and Betta at this point realize that the error has been conveyed by the drawing of 

a particular function, such that ⏐f(x0+h)-f(x0)⏐ = ⏐f(x0)-f(x0-h)⏐ 

 

R69: D: we did a drawing that misled us  

R77: D: but now neither the graphic one convinces me anymore…because we used the 

symmetry respect to f(x0)…no, no…that one is true 

R79: I: what has been the conjecture brought up by the graph? Therefore…from the 

graph you said…probably is f’(x0) 

  

Daniele starts doubting about the graphic justification too, but then he realizes that the 

important thing is the passage to the limit that brings to the same tangent line in (x0, f(x0)) 

They remain convinced that such a limit represents the first derivative of f in x0, that is 

the rate of change of the tangent line; they remain, therefore, considering the fact that the 

two limits are the same; they only abandon the previously built hypothesis, because it 

revealed to be false. It is interesting to observe that the non-validity of the hypothesis has 

undermined the conviction of the fact 

 
h

hxfhxf
h 2

)()(
lim 00

0

−−+
→

 = 
h

xfhxf
h

)()(
lim 00

0

−+
→

  

only for a while, after which the graphic approach has prevailed. 
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 The following step is to retake the algebraic manipulation, this time they add and 

subtract f(x0), probably with the aim to obtain partially the expression of the standard 

difference quotient; they separate the two expressions getting 

h
hxfxf

h
xfhxf

hh 2
)()(

lim
2

)()(
lim 00

0

00

0

−−
+

−+
→→

 

 from which they write  

2
)('

2
)(' 00 xfxf

+ . 

At the moment I asked them to explain me why the  

h
hxfxf

h

)()(
lim 00

0

−−
→

 was f’(x0) 

 they answered me they had seen it graphically. 

5.1.4   Analysis through the tools of the Abductive System 

 
Excerpt 

Interpretation through the tools 

of the Abductive System 

In my opinion it is the same thing… 
 

Namely, doing  

h
hxfhxf

h 2
)()(

lim 00

0

−−+
→

  is the same as 

h
xfhxf

h

)()(
lim 00

0

−+
→

… 

 

 

 

 

CONJECTURE with the role of answer to 

the problem; therefore, C-FACT. 

The C-FACT expresses a process, and it is 

created by a PHENOMENIC ACTION guided 

by a feeling, by a visual impact with the 

graphic representation met for the limit 

of the standard different quotient. The 

statement describing the C-FACT is an 

UNSTABLE STATEMENT because the visual 

impact seems to be insufficient to 

validate the act of reasoning. 

 

 

 

 

Search of a 
validating 
hypothesis 
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The two limits use the same tools 

 

 
 

Creation of a HYPOTHESIS through an 

ABDUCTIVE ACTION guided by the 

reinterpretation of the frame used for the 

standard difference quotient: Daniele 

translates the difference quotient as the 

ratio between the vertical and horizontal 

segments (see the two figures) and he shifts 

such interpretation to the present situation. 

The act of reasoning seems to be expressed 

by a STABLE STATEMENT since the graphical 

justification results sufficient for them. 

Probably such a kind of hypothesis has 

been also generated by the kind of function 

sketched by Daniele. The choice of x0 leads 

to a sort of symmetry related to f(x0); 

namely, f(x0+h) –f(x0) and f(x0) –f(x0-h) 

which seem to be two segments of equal 

length. 

 

 

 

 

 

 

 

 

 

 

 

 

A new phase starts. I provoke 
Daniele and Betta with the aim 
to generate the doubt about the 
adequacy of their graphical 
justification 
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h
hxfhxf

h 2
)()(

lim 00

0

−−+
→

= 

h
xfhxf

h

)()(
lim 00

0

−+
→

 

 

 

 

 

 

 

The C-FACT is not changed; and the 

PHENOMENIC ACTION is always guided by a 

visual impact. The act of reasoning is 

expressed by an UNSTABLE STATEMENT. 

 

=
−−+

h
hxfhxf

2
)()( 00

h
xfhxf )()( 00 −+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Creation of a HYPOTHESIS through an 

ABDUCTIVE ACTION probably guided by a fact 

already acquired, namely if  

f(x) = g(x)     ∀x∈(x0-δ, x0+δ)      then  

limx→x0 f(x) = limx→x0 g(x).  

the hypothesis is expressed by an UNSTABLE 

STATEMENT. 

 

 

 

Search of a 
validating 
hypothesis

They start with algebraic manipulation to 
prove the equality. After several 
attempts, they go back to a graphic 
exploration and they find out that such 
equality would confirm the parallelism of 
the two lines; this is impossible since 
both go through the point (x0+h, f(x0+h)). 
This brings the two students to refute the 
aforementioned hypothesis. 
 
Nevertheless, they go back to the graphic 
exploration and their c-fact does not 
change, because the graphic dynamics 
reinforce their conviction that when x 
goes to x0 the line becomes the tangent 
line, therefore the limit represents the 
first derivative like the limit of the 
standard difference quotient.  
What changes is the approach to prove 
the c-fact, with a new manipulation of 
the starting expression. 
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h
hxfxf

h

)()(
lim 00

0

−−
→

 = f’(x0) 

 

 

 

 

 

 

 

This act of reasoning take the connotation 

of FACT in the sense that they justify it 

through the graphical interpretation as they 

did previously with the initial expression 

and the graphic interpretation this time is 

enough. A STABLE STATEMENT therefore 

expresses the fact. 

5.1.5   Francesca and Daniele (fixed point problem) 

Francesca and Daniele visualize immediately on a graph the set of the fixed points 

as the bisector line of the first and third orthant; the property is already present in their 

cultural background: “the bisector line is the set of the fixed points”. The drawing itself 

probably suggests the characterizing property of the fixed points which is, according to 

Francesca, the belonging to the bisector line. 

Therefore, there is the consideration of a fact: the set of the fixed points is 

represented by the bisector line of the first and third orthant. The fact is implicitly 

expressed by a stable statement, in the sense that Francesca and Daniele consider this fact 

already acquired; as it would be already part of their cultural background. The subsequent 

step is the consideration of a further fact that expresses a property: to be a fixed point 

means to belong to the bisector line; in this case too, it seems not to need further proof, 

being the consequence of the definition of the fixed points. 

R1: Fr.: there must be an intersection between the function and the bisector line 

 

 

The algebraic manipulation brings to 
the expression  

h
hxfxf

h
xfhxf

hh 2
)()(

lim
2

)()(
lim 00

0

00

0

−−
+

−+
→→

 

with the construction of a new 
conjecture. 
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R3: Fr: if there is the fixed point there absolutely must be the intersection with the 

bisector line. 

From R1 and R3 it seems a positive answer has already been taken into 

consideration, namely, the function has a fixed point. Such an attitude may be conveyed 

by a didactical contract: “if they ask, probably there will be one”; or it is simply a choice 

at the 50 per cent. Even in this case, like in Matteo and Marco’s protocol, the first step is 

represented by the attempt to give an immediate answer from which to proceed. 

Considering thefact of the presence of a fixed point, the subsequent step is represented by 

the construction of a hypothesis, which may validate the fact, and which takes the aspect 

of conjecture and therefore it represents a c-fact. 

Francesca states: “there exists an intersection with the bisector line”; we are in 

front of an abductive statement built through a deductive process, namely, it seems to be 

led by the characterization (according to Francesca’s cultural background) of the fixed 

point, that is translated by Francesca from f(x) = x to y = x. That means, if the function 

has a fixed point, such a point, for its characterization, must stay on the bisector line 

(note: my interpretation was confirmed later by Francesca). Therefore, the abductive 

action may have been guided by the following deductive process: 

∀ P ∈ b → P is fixed    (b is the bisector line) 

Q ∈ b 

Q is fixed   modus ponens 

 

Summarizing: 

1st step: consideration of the set of the fixed points as the bisector line 

2nd step: construction of the theory: “being a fixed point means to belong to the bisector 

line” (happened by deduction) 

3rd step: consideration of the c-fact “∃ a fixed point”; guided by a didactical contract or 

by a simple choice at 50%. It is expressed by an unstable statement (such reasons seem to 

be not sufficient to legitimate the conjecture); in fact Francesca looks for a hypothesis 

that could validate the answer. 
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4th step: consideration of a hypothesis: “the function intersects the bisector line”, 

validating the c-fact. This second statement would explain the existence of a fixed point. 

In fact, the belonging of a point to a bisector line is the equivalent, for Francesca, of 

being a fixed point; therefore, if the function intersects the bisector line, the function has 

a point in common with this line and therefore the first function has a fixed point too. 

 The abductive statement is an unstable statement, because thus far, Francesca 

does not know if the function intersects the bisector line. 

R5: Fr: if there weren’t (fixed points) it (the function) would stay all over or all under the 

bisector line…the only case would be if the bisector line were the asymptote of the 

function… 

R6: Dan: but it is not possible 

R7: Fr: …but it is not possible because it is continuous… 

R8: Dan: it is not possible because 1 is between…I mean…the function in 1 exists…that 

is, here it is included…(ndr: he writes a square parenthesis on 0 and on 1 on the x-axis 

and he does the same thing on the y-axis) 

R9: Fr: therefore the bisector line cannot be an asymptote, and then if it is not an 

asymptote it must cross it for sure… 

R10: Fr (talking to I) probably we answered…if A is a fixed point it must have an 

intersection with the bisector line…the only case for the contrary is if the bisector line 

were the asymptote of the function…but, if the function is defined from [0,1] to [0,1] 

included…the function is defined in 1 too, therefore at the most the point is (1,1) or it 

crosses it. 

 The proving process begins with the denial of the fact: “if there weren’t fixed 

points…”, and it follows with the proof by deduction that it is not possible because of the 

continuity of f in [0,1] onto [0,1]. 

This proof doesn’t seem to be sufficient; perhaps they feel the possible fallacy of the 

visual impact they used in the proving process; and therefore there is the search of 

something “mathematically acceptable”. The sign, at this point, plays an important role 

due to the fact that the bisector line and the sketch of some possible functions evoke the 

Theorem of the Zeros. 
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R16: Dan: (he draws several functions, then he realizes that it is not like that) anyway, 

there is one fixed point for sure…if it must take all the values and if we make it start from 

here…if it must take all the values it must start from this point…from this…this…because 

it can’t come back…to take all the values it must start from the maximum up to the 

minimum…if we think of that theorem where if you have a point here and one here it must 

go through here, for sure (see Figure 12). 

 

  
 

Figure 12: Daniele’s drawings 

R17: Fr: it is the Theorem of the Zeros… 

[…] 

R27: Fr: oh yes…instead of the x-axis we have a line 

R28: Dan: the bisector line… 

R42: Dan: (talking to me) is it enough in this way?…I mean, if it is a proof that can be 

accepted or not (Daniele explains the proof)…by the moment that it must take all the 

values of the Image, a > x   b < x…(he corrects himself)   f(a) > x  f(b) < x (see Figure 

13). 

 

Figure 13: Graphic aid for the proof 
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R43: I: what is x? 

R44: Dan: x  is the bisector line, otherwise if b were here it could not take all the values 

of the Image because the function could not do like this (and he traces a vertical line)… 

R50: Fr: ah no…anyway, the theorem of the zeros shifted up…for example this is the line 

x = 2 there is necessarily a point f(x) = 2 and therefore the same thing if we take the 

bisector line as the line…there is a point that is over…one that is under…there must exist 

necessarily a point that lies on the bisector line 

R51: I: Why? 

R52: Fr: because the function is continuous 

R54: Dan: If I divide the bisector line in several intervals… 

The proof continues with the attempt to adapt the proof of the theorem of the zeros to the 

new situation (see the attached transcripts at the end of the work); the proof will remain 

“technically incomplete”, but the conviction that the present situation is a modified 

situation of the Theorem of the Zeros, gives them the certainty of the existence of the 

fixed point. In this phase we can observe the ability of adapting a proving process that 

brings to light an internalization (Harel) work of a cognitive process. 

 

It is important to observe that in the evidencing phase we can find a sort of abductive 

attitude, in the sense that Francesca and Daniele justify their idea to use the structure of 

the proof of the Theorem of the Zeros because the graphic situation is analogous and the 

x-axis is replaced by the bisector line. 

Therefore, there is the construction of a C-FACT: it is possible to use the structure of the 

proof of the theorem of Zeros, and the construction of the justifying HYPOTHESIS: 

analogous graphic situation, and the x-axis is replaced by the bisector line. 

 

 

 
 
 



 123

5.1.6   Analysis through the tools of the Abductive System 

Excerpt Interpretation through the tools of the Abductive 

System 

 

The set of the fixed points is 

represented by the bisector line of the 

I and III orthant 

 

 
 

 

FACT created by a PHENOMENIC ACTION guided by 

the necessity of visualization. The statement 

describing the fact is a STABLE STATEMENT justified 

by an already acquired knowledge, or just an 

immediate translation of f(c) = c into y=x, and its 

graphic representation seems to be enough to 

justify the ACT OF REASONING. 

 

Being a fixed point is equivalent to 
belong to the bisector line of the I 
and III orthant 
 

CREATION OF A “THEORY” OR A REGULARITY created by 

a PHENOMENIC ACTION guided the interiorization 

(Harel) of a cognitive process: deduction.  

The statement describing the FACT is a STABLE 

STATEMENT, because the consideration of the 

bisector line as the set of the fixed points and the 

deduction 

∀ P fixed → P∈ b 

Q fixed  

 

Q ∈ b                  (MODUS PONENS) 

seems to be sufficient. 
 
 
 

Need to 
translate 
such a fact 
in a sort of 
theory or 
regularity 
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The function has a fixed point 
 
 
 
 
 
 
 
 
 
 

A PHENOMENIC ACTION, guided by a didactical 

contract (if the problem asks such a question, 

probably the function has a fixed point; or just a 

choice at 50%) generates a CONJECTURE with the 

role of the answer to the problem, therefore it 

becomes a C-FACT.  

The C-FACT is expressed by an UNSTABLE 

STATEMENT, because Francesca and Daniele don’t 

consider the didactical contract or a choice at 50% 

to be good enough to justify the conjecture. 

 

 

 

Exists an intersection between the 

function and the bisector line 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

HYPOTHESIS created by an ABDUCTIVE ACTION guided 

by the interiorization of a cognitive process: 

deduction 

∀ P   b(P) → P fixed 

∃ Q ∈ gr(f)  such that  b(Q) 

∃ Q ∈ gr(f) such that Q is fixed    (MODUS 

PONENS) 

The HYPOTHESIS is expressed by an UNSTABLE 

ABDUCTIVE STATEMENT, because she knows that if it 

were verified, then it would legitimize the 

existence of the fixed point. But she doesn’t know 

if the function satisfies such a condition for sure. 

It is possible to use the same 
structure of the proof of the Theorem 
of Zeros 
 
 
 
 
 

C-FACT created by a PHENOMENIC ACTION guided by a 

visual impact and by their knowledge of the 

theorem and of its proof.  

Now they need to find a 
hypothesis that could 
justify the c-fact 

The need of 
validating the 
hypothesis 
takes place 

They feel the need to 
justify it 
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There is an analogous graphic 

situation, and the bisector line 

replaces the x-axis. 

ABDUCTIVE ACTION, which builds the HYPOTHESIS 

justifying the C-FACT. It is expressed by a STABLE 

STATEMENT because the graphic evidence 

concerning the analogies with the known theorem 

seems to be sufficient. 

5.1.7   Alice and Roberta (fixed point problem) 

R2: R: fixed point on the bisector line and therefore… 

Roberta and Alice immediately state that the fixed point lies on the bisector line and then 

they draw the line. A property like “P fixed point ⇒ P ∈ bisector line” is already present 

in their cultural background. 

R3: A: (she draws the bisector line) therefore this is the (1,1) and (0,0). The idea 

becomes sign (Figure 14) 

 

Figure 14: Alice’s drawing of the bisector line 

 

R4: R: The fixed point must be between these two points …(and she signs the two points 

(0,0) and (1,1) going along the bisector line) 

Consideration of a fact: “the fixed point is on the segment with end points (0,0) and 

(1,1).” Such fact seems to be legitimated by the property previously considered (namely, 

the fixed points lay on the bisector line), and by the domain of f which is [0,1]. 
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R5: A: Exactly…but it could have only these two points [(0,0), (1,1)]; if it were in this 

way (and she signs a concave function over the bisector line) therefore there is a fixed 

point for sure, because there are these two points of the bisector line (and she signs (0,0) 

and (1,1)) 

Consideration of two new facts: 

1) “The function has for sure two fixed points which are (0,0) and (1,1)”; 

2) “And it has only those if the graph of f is done in a particular way”. 

Both facts seem to be expressed by means of stable statements; in the first case Alice has 

taken into consideration, a-priori, that the function starts from (0,0) and finishes into 

(1,1); probably she has been conditioned by a visual impact with the graph she has 

produced, and by the definition of the function in the problem. The second act of 

reasoning is expressed by a stable statement, which is supported by a graphic impact. 

R6: R: eh…no, because the function could start from here and from here. 

What is a stable statement for Alice is an unstable statement for Roberta, who 

immediately refutes Alice’s assertion showing that the function does not necessarily 

starts from the point (0,0), but it can start from any point of the segment whose extremes 

are (0,0) and (1,1). 

R7: A: you are right, it is true; it is defined from 0 to 1… 

R8: R: oh yes...the function starts from 0 and then there is a point here for sure (she 

underlines the segment from 0 to 1 on x-axis) and it arrives at x=1, therefore there is also 

a point here for sure (she underlines the side of the square of vertexes (1,0) and (1,1)) 

(see figure 4). 

R9: A: oh right...then it has to intersect the bisector line for sure…suppose that it does 

like that… 

The newly produced sign leads to the construction of a new fact: “The function intersects 

for sure the bisector line.” This fact is expressed by a stable statement justified by 

knowledge already possessed by the students, namely, “the continuous functions don’t 

have gaps in their graph.” 

R10: R: hmmm…the function must have a fixed point for sure…because it has to pass 

from here to there. 
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Construction of a fact “The function had a fixed point for sure.” The fact is justified 

because the function intersects the bisector line. 

Both Alice and Roberta seem to be arrived at the conclusion that the function definitely 

has a fixed point; namely their act of reasoning is expressed by a stable statement. 

From here the process becomes an evidencing process, in the sense that they don’t try to 

establish the stability of their statement, since it is already stable for them, but they try 

rearrange their “proof” in a way that can be considered acceptable by the others. 

R27: A/R: then the function must start from 0 and have f(x) on this side and arrive at the 

point of abscissa x=1 and f(x) on this side then…there is the bisector line that goes 

through (0,0) and (1,1) 

R33: A: (Alice writes) then P(0, 0≤ y ≤1) because the domain… 

R34: R: it is defined from 0 to 1 

R37: A (Alice writes) it must exist too…P1 (1, 0≤ y ≤1), I would start with the limit cases, 

P(0,0) and P1 (1,1) or when (she goes with her finger from the point (0,0) along the 

segment 0-1 on the y-axes, and she does the same with the point (1,1) downwards) 

At this point they write on their protocol: 

If the function f(x) goes through P(0,0), a fixed point is P; there could exist other fixed 

points in the case that the function intersects the bisector line. 

In the same way, if the function goes through the point P(1,1). In all other cases the 

function will have to go through a point with abscissa 0 and a point of abscissa 1 (for 

hypothesis). In these cases the ordinate of the point with abscissa 0 will have to be 0 ≤ y 

≤ 1, and the ordinate of the point with abscissa 1 will have to be 0 ≤ y ≤ 1. Being the 

function continuous for any path satisfying the aforementioned conditions will have to 

intersect the bisector line in at least one point (on the bisector line lie all the fixed 

points). 
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5.1.8   Analysis through the tools of the Abductive System 

Excerpt Interpretation through the tools of the 

Abductive System 

 

The fixed point must be between these 

two points 

 

FACT created by a PHENOMENIC ACTION guided by 

the necessity of visualization. The statement 

describing the fact is a STABLE STATEMENT 

justified by an already acquired knowledge, 

namely, “the fixed points are on the bisector 

line”, as they claim in R1. 

 

 

 

 

 
 
The function has for sure two fixed 
points which are (0,0) and (1,1) 
 
 
 

This act of reasoning owns a different role for 

Alice and Roberta. According to Alice, this is 

a FACT, expressed by a STABLE STATEMENT 

justified by her conviction that the functions, 

as defined in the problem, starts from (0,0) and 

ends in (1,1). According to Roberta the 

statement expressed by Alice is an UNSTABLE 

STATEMENT, since the function does not 

necessarily starts from (0,0) and ends in (1,1); 

and for this reason it is a C-FACT, which 

Roberta immediately refutes. Roberta could 

contest the statement, probably because she 

was able to use a transformational reasoning 

(in sense of Harel’s) which allowed her to 

imagine different situations of the graph of the 

function f. 
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The function intersects the bisector line 
for sure. 
 
 
 

FACT, created by a PHENOMENIC ACTION, guided 

by a graphic exploration. The FACT is 

expressed by a STABLE STATEMENT justified by a 

knowledge already possessed by the students, 

namely, the “continuous functions don’t have 

gaps in their graphs.” 

 

 

The function must have a fixed point for 

sure 

 
 
 
 
 
 
 
 
 

 

 

FACT created by a PHENOMENIC ACTION guided by 

a deductive process: 

Any point on the bisector line is fixed 
The function has a point on the bisector line (seen 

before) 

 

The function has a fixed point     (MODUS PONENS)       

 

The FACT is expressed by a STABLE STATEMENT, 

since the preceding visual impact (regarding 

the intersection between the function and the 

bisector line) and the deductive process 

mentioned above seem to be sufficient to 

justify the act of reasoning. 

5.1.9   Francesca and Serena (limit problem) 

R1: S: h goes to zero…x0+h… 

They immediately draw a graph tracing on the axis x0, x0 + h, f(x0), f(x0+h)… 

R2: S: f(x0+h) 

She looks at it on the graph 

R3: S: when h → 0 this gets closer here and also f(x+h) 

[…] 
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R7: S: anyway, this difference goes to zero…and if we separate them?…
h

hxf
2

)( 0 +
… 

f(x0+h) → f(x0)… 

There is the creation of a fact, but it seems this fact does not convince them…probably 

they abandon such a idea and think instead of a strategy: “to separate the two addends”. 

The choice is probably suggested by a previous knowledge related to the expression of 

the standard difference quotient; in fact Francesca adds a and subtracts f(x0) with the aim 

of obtaining a part of the expression of the standard difference quotient. 

R8: F: 
h
xf

h
hxf )()( 00 −

+
 and then we add it… 

 

R9:F&S: let us write it down better: ⎟
⎠
⎞

⎜
⎝
⎛ −

−+⎟
⎠
⎞

⎜
⎝
⎛ −

+
→ h

hxf
h
xf

h
xf

h
hxf

h

)()(
2
1)()(

2
1lim 0000

0
 

R10: F: this (referring to the first parenthesis) is our f’(x0) therefore 
2
1 f’(x0) 

R11: S: that thing there (referring to the second parenthesis)… 

R12: F: it will be a difference quotient as well…because if you look at the drawing…from 

this you take off this and divide by h; from that you take off this and you subtract h, 

therefore the difference should be the same thing… 

At this point there is the creation of a new fact, probably guided by a visual impact very 

similar to the standard difference quotient. There is also the construction of a justifying 

hypothesis, which is based on a graphic interpretation of the difference quotient. 

R13: S: then…1/2 f’(x0) – 1/2  ⎟
⎠
⎞

⎜
⎝
⎛ −

−
→ h

hxf
h
xf

h

)()(
lim 00

0
this  goes to zero… 

R14: F: hmmmm…. 

R15: S: in my opinion is wrong…ah…but wait…here there is –h therefore this becomes 

+…then f’(x0)… 

R19: F: yes…also because basing on my intuit I would have said that the limit would go 

to f’(x0)….therefore ⎟
⎠
⎞

⎜
⎝
⎛ −

−
h

hxf
h
xf )()( 00  is the difference quotient 
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Francesca explains to me what they did 

R20: F: We did it very algebraically…and we said…first we add ⎟
⎠
⎞

⎜
⎝
⎛

h
xf )( 0  and then we 

subtract it…first we take out 1/2 …
( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛ −

−
+

h
hxf

h
hxf 00

2
1  I add and subtract 

h
xf )( 0  

therefore here taking it out, I have exactly the difference quotient, thus I have f’ (x0) 

here… 

R22: I: here can I say that it is f’(x0)? 

R23: F: 
( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛ −−

h
xfhxf 00  let us change the signs…

( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

−
−−

−
h

hxfxf 00

2
1  and we 

said… 

R24: S: that the difference quotient can be 
( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛ −+

h
xfhxf 00  but also 

( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

−
−−

h
xfhxf 00  

R25: I: Why? 

R26: S: because h goes to zero therefore –h goes to zero and thus even this is f’(x0), then 

( ) ( ) ( )000 ''
2
1'

2
1 xfxfxf =+  

5.1.10    Analysis through the tools of the Abductive System 

Excerpt Interpretation through the tools of the Abductive 

System 
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…anyway, this difference goes to 

zero(she refers to the limit of the 

problem) 

 

 

 

 

 

C-FACT created by a PHENOMENIC ACTION guided by a 

graphic exploration that shows the getting closer to 

the same point, for h→ 0, of f(x0-h) and of f(x0+h). 

The statement describing the act of reasoning is an 

UNSTABLE STATEMENT since for some feeling this 

conjecture doesn’t convince Serena. 

 

...that thing there (referring to the 

second parenthesis)… it will be a 

difference quotient as well 

 

 

C-FACT created by a PHENOMENIC ACTION guided by a 

visual similarity with the standard difference 

quotient expression. The ACT OF REASONING is 

expressed by an UNSTABLE STATEMENT, since the 

visual analogy seems to be not enough. 

…if you look at the drawing…from 

this you take off this and divide by 

h; from that you take off this and 

you subtract h, therefore the 

difference should be the same 

thing… 

This hypothesis can be translated as 

follows: 

Both expressions represent the same 

procedure  

HYPOTHESIS created by an ABDUCTIVE ACTION guided 

by the graphic interpretation of the difference 

quotient. The HYPOTHESIS is expressed by a STABLE 

ABDUCTIVE STATEMENT since the graphic 

interpretation seems to be enough to justify the 

hypothesis. 

5.1.11    Alice and Marco (limit problem) 

R2: A: at the end…it is the difference quotient…only that there is 2h instead of h… 

There is the creation of a fact conveyed by a visual analogy with the standard difference 

quotient. 

R4: A: no…wait… 

Search of a validating 
hypothesis 

The conjecture does not convince 
Serena, even though she has 
formulated it. There is the 
necessity to try another way. This 
brings Serena and Francesca to 
add and subtract f(x0) and it leads 
to the  expression 

⎟
⎠
⎞

⎜
⎝
⎛ −

−+⎟
⎠
⎞

⎜
⎝
⎛ −

+
→ h

hxf
h
xf

h
xf

h
hxf

h

)()(
2
1)()(

2
1lim 0000

0
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R7: M: it is similar to the difference quotient…then…the difference quotient is…(they 

think for a while and then they conclude) 
h

xfhxf )()( 00 −+
…yes…yes it is similar 

to…but there is not f(x0-h) 

The fact is modified, and it becomes “it is similar to the difference quotient” 

At this point they write 
h

hxfhxf
h 2

)()(
lim 00

0

−−+
→

 

R9: A: I write also the difference quotient. 

R12: M: oh yes...in other words we have the limit of two functions, I mean, the limit of 

h
hxf

2
)( 0 +

 minus the limit of 
h

hxf
2

)( 0 −
 and we cannot say that is the limit of the 

difference, so to speak, we take the result of this… 

R13: A: but with the limit...what we arrive to say? Because…at the end…we know how to 

calculate this limit…we know that the function is defined and differentiable, therefore we 

know that is continuous, then we don’t need to do all the calculation of the limit… 

In these first lines, they start saying that the expression is similar to the difference 

quotient because of a visual analogy. There is, then, a recall to their cultural background. 

They manipulate the expression and examine what they can say about each limit. At the 

end they conclude such an approach will not bring them to anything concrete. 

 

R17: A: You know what we can do? In 
h

xfhxf )()( 00 −+
 there was the graph to show 

that it was the slope… 

There is the search in their own cultural background of what they learnt about the 

h
xfhxf

h

)()(
lim 00

0

−+
→

 

R18: M: yes…of the line… 

R19: A: perhaps this is related to the slope but shifted up or down… 

 

They draw a function and reproduce on the graph the difference quotient (see Figure 15) 

and they build a new fact guided by an already acquired knowledge.  
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Figure 15: Graphic interpretation of the limit of the standard difference quotient 

 

R20: A: I mean…when h → 0…do you remember the graph? 

[…] 

R25: A: then…when h → 0…oh yes…this becomes the tangent line in this point 

here…(Figure 16) 

[…] 

R31: A: now let us try to draw this (
h

hxfhxf
2

)()( 00 −−+
) (see Figure 16) 
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Figure 16: Representation of 
h

hxfhxf
2

)()( 00 −−+
 

 

R33: A: in my opinion this could work as a difference quotient… 

Based on the graphic exploration, the construction of a new fact occurred: 

“
h

hxfhxf
2

)()( 00 −−+
 works as difference quotient as well”. 

R34: M: but the difference quotient is the slope of the tangent line… 

R35: A: yes… 

R36: M: and there, it goes…here what does this (
h

hxfhxf
2

)()( 00 −−+
) represent? 

R41: A: It could represent the slope of the tangent line… 

 

Again the construction of a new fact, namely “the 
h

hxfhxf
h 2

)()(
lim 00

0

−−+
→

 could be the 

slope of the tangent line”. 

R42: M: the tangent line in which point…? 
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R43: A: We need to see in which point…then, if h goes to zero…let us see what happens 

when h goes to zero…it means that…here there is a distance of 2h…between x0 + h and 

x0 – h 

R45: A: when h goes to zero, this becomes zero and goes to x0, this one becomes zero and 

goes to x0…therefore all the values go to x0…while here (she refers to 

h
xfhxf )()( 00 −+

)…too…at the end they always go to x0…because the numerator when 

h goes to zero goes to…wait…goes to zero… 

R46: M: here (referring to the expression 
h

xfhxf )()( 00 −+
) it goes to…zero…oh…OK 

R47: Alice signs on the y-axis f(x0+h)-f(x0) and f(x0)-f(x0-h) (see figure 5) 

R48: A: then…here we have 
h

hxfhxf
2

)()( 00 −−+
... f(x0-h) is equal to f(x0+h)-… 

R49: M: minus 
h
xf )( 0 ... 

At this point they try to find graphically f(x0-h)…but they realize they don’t arrive 

at anything… 

It is important to underline that the graphic exploration has led Alice and Marco to 

state that the limit would represent the slope of the tangent line in x0; such a statement 

seems to be expressed by an unstable statement, since Alice feels the necessity to justify 

it algebraically. The algebraic exploration, though, suggests a different result and this is 

sufficient to make them to forget their graphical conclusion. Therefore, an algebraic 

manipulation takes place in order to obtain some kind of expressions similar to the 

standard difference quotient. 

R51: A: but we can write it as...I mean the limit of this one... 

h
hxfhxf

h 2
)()(

lim 00

0

−−+
→

...as a matter of fact we know the numerator, we can write it as 

addition and subtraction of limits in such a way to have inside of the expression  

h
xfhxf )()( 00 −+  

R52: M: OK...you take out 
2
1 … 



 137

Alice writes 
h

hxfhxf
h

)()(
lim

2
1 00

0

−−+
→

 

R54: M: do you want to have the difference quotient? 

At this point they think for a while…they observe the graph they made…(see Figure 16) 

R56: A: we could write…(she adds and subtracts f(x0)) and then we separate 

it… )
)()(

lim
)()(

lim(
2
1 00

0

00

0 h
xfhxf

h
xfhxf

hh

−−
−

−+
→→

the first become f’(x0) and the 

second one?…I don’t know… 

R57: M: isn’t it the difference quotient with the difference that there is a minus? 

Therefore it is the same thing but considered at the other side… 

Creation of a new fact: “the expression 
h

hxfxf )()( 00 −−
 is like the standard difference 

quotient with the only difference being that there is a minus before. 

R64: A: then it could be zero…I mean…in both cases you arrive at the slope of the 

tangent line here. Therefore, it is the same thing of doing the slope of the tangent line 

here, minus the slope of the tangent line always here… 

R68: M: yes. Zero. 

The graphic interpretation has completely disappeared; they see in both limits the slope 

of the tangent line in x0 but they don’t relate the algebraic interpretation with the graphic 

one; the algebraic impact prevails, and they don’t realize that a limit equals to zero would 

imply a tangent line parallel to the x-axis which would be in contrast with their graphic 

representation. 
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5.1.12    Analysis through the tools of the Abductive System 

Excerpt Interpretation through the tools of the 

Abductive System 

At the end …it is the difference 

quotient…only that there is 2h instead of 

h…(referred to 
h

hxfhxf
2

)()( 00 −−+
) 

 

 

 

 

Initially the act of reasoning seems to be 

represented by a FACT created by a 

PHENOMENIC ACTION guided by a visual 

analogy with the standard difference 

quotient. The fact is expressed by a STABLE 

STATEMENT where the analogy with the 

standard difference quotient seems to be 

enough. 

It is similar to the difference quotient. FACT created by a PHENOMENIC ACTION 

conveyed by a visual analogy with the 

standard difference quotient; such analogy 

seems to be enough to justify the STABLE 

STATEMENT expressing the fact. 

Perhaps this is related to the slope…but 
shifted up or down…(referred to 

h
hxfhxf

h 2
)()(

lim 00

0

−−+
→

) 

C-FACT created by a PHENOMENIC ACTION 

conveyed by a recall to an already acquired 

knowledge about the relationship between 

the 
h

xfhxf
h

)()(
lim 00

0

−+
→

 and the slope of 

the tangent line. They shift this relationship 

to the 
h

hxfhxf
h 2

)()(
lim 00

0

−−+
→

 imagining 

a sort of translation of the line. The act of 

reasoning is expressed by an UNSTABLE 

STATEMENT since the internalization (Harel) 

of the graphic interpretation of the limit of 

the standard difference quotient seems not 

sufficient to justify the C-FACT 

Very soon Alice
realizes that the
expression is not the
difference quotient,
but just similar to it. 
The previous fact is
transformed into 



 139

In my  opinion this could work as a 

difference quotient 

 

 

 

 

 

 

 

 

 

 

C-FACT, created by a PHENOMENIC ACTION 

guided by a graphic exploration, namely 1) 

the representation on the x-y axis of 

h
xfhxf )()( 00 −+

 and its dynamics when 

h → 0 (already known by the students); 2) 

the representation of 

h
hxfhxf

2
)()( 00 −−+

. 

The C-FACT is expressed by an UNSTABLE 

STATEMENT since a sort of analogy between 

the two graphic representations seem to be 

not enough to justify the act of reasoning. 

h
hxfhxf

h 2
)()(

lim 00

0

−−+
→

 could represent 

the slope of the tangent line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

C-FACT created by a PHENOMENIC ACTION 

guided by graphic exploration and by the 

analogy with a dynamics already known. It 

is expressed by an UNSTABLE STATEMENT 

since the means used seem not to be 

sufficient to justify it. 

There is an evolution in the act

of reasoning. From stating that

h
hxfhxf

2
)()( 00 −−+

is the

difference quotient  to the

statement that

h
hxfhxf

2
)()( 00 −−+

can work

The problem now becomes the point of 
tangency. A graphic exploration takes 
place bringing them to state that x0+h and 
x0-h go to x0 when h → 0, but the result 
that the numerator of both expressions 
f(x0+h) –f(x0) and  
f(x0+h) –f(x0-h) go to zero when h goes to 
zero leads them far away from the target 
(to understand which the point of tangency 
is); and they don’t realize that they 
considered the dynamics of both 
denominators from the graph and this 
ended with the assumption of x0, while 
they considered the result of both 
numerators from an algebraic point of view 
and this led them to state that it was zero. 
This situation seems to destabilize Alice 
and Marco who start an algebraic 
manipulation in order to obtain, at least in 
part, the expression of the standard 
difference quotient. 
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h
hxfxf )()( 00 −−

 is the difference 

quotient only that there is a minus; namely, 
it is the same thing but considered at the 
other side. 
 
 
 

Creation of a FACT generated by a 

PHENOMENIC ACTION, guided by a graphic 

exploration. It is expressed by an STABLE 

STATEMENT, because the graphic exploration 

seems to be enough to justify the act of 

reasoning. 

5.2    Analysis of a lesson given by the professor 

The analysis of the lecture is aimed at examining the structure of the teacher’s 

dialogue, indicating creative abductive processes, and to compare these with the attitudes 

observed in the students. The analysis follows the same procedure adopted for the 

protocols: it is divided into two phases; the first phase shows a comprehensive 

description of teacher’s behaviors in tackling the topic, in the second phase the creative 

processes are detected and interpreted through the elements of the abductive system. 

A table divided into three columns represent the structure of the second phase of 

the analysis; the first column has been used to write the excerpts considered relevant to 

the creative processes; the second column has been used to write the interpretation 

through the tools of the abductive system in the teacher’s perspective; the third column 

has been used to write the interpretation through the tools of the abductive system in the 

student’s perspective. 

5.2.1   The lecture 

The lecture concerns the proposal of some tasks regarding the continuity and 

differentiability of the one-variable functions. The following analysis proposes only some 

parts of the lecture, having chosen the most significant parts related to the creative 

abductive processes. 

at the end they arrive to separate 

h
xfhxf )()( 00 −+

 and 

h
hxfxf )()( 00 −−

 and to state that  
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The initial approach of the teacher consists of stating the definition of 

differentiability, and it is written on the blackboard; this issue is introduced underlying 

that the differentiability is the last topic seen by the student in the theory.  

 

f: (a,b) → R          x0 ∈ (a,b) 

f is differentiable in  x0 

if  
0

0 )()(
lim

0 xx
xfxf

xx −
−

→
 exists and belongs to R 

 

The subsequent step is characterized by the geometrical interpretation, and the 

problem is introduced by a question: 

T: what does it mean from a geometrical point of view? 

At this point he draws a graph 

 

 

 

 

 

 

Figure 17: First graph for the geometrical interpretation of the first derivative 

 

The teacher reconsiders the expression 
0

0 )()(
xx

xfxf
−
−

 saying: this object is named 

difference quotient, justifying the term through the graphic and showing that at the 

numerator there is the increment of f (note: he visualizes it on the graph) 

 

 

 

 

 

x0 x

f(x0) 

f(x) 
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Figure 18: Graphical visualization of the increment f(x)- f(x0) 

 
While at the denominator the increment of x (note: he visualizes it on the graph, too) 

 
 
 
 
 
 
 
 
 
 

Figure 19: Graphical visualization of the increment x-x0 

 

The difference quotient, at this point, is interpreted as the slope of a tangent, which is 

drawn on the graph 
 

 

 

 

 

Figure 20: The line through the points (x0, f(x0)) and (x, f(x)) 

In this phase the gestures, the use of the graphs and the reference to them become 

fundamental tools. The professor refers to the limit “imitating one the graph” the 

approaching of the line while x approaches x0 and showing the transformation of the line 

into tangent line. 

x0 x

f(x0)

f(x)
f(x) – f(x0)

x0 x

f(x0)

f(x)
f(x) – f(x0)

x – x0

x0 x

f(x0)

f(x)
f(x) – f(x0)

x – x0
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Subsequently, he recalls another formula: Do you remember the formula of the 

tangent line? (note: even in this case the introduction of a concept occurs with a question) 

(x0, f(x0)) is 

y = f(x0) + f’(x0) (x-x0) 

this because it is a line that goes through the point (x0, f(x0)) and its slope is the first 

derivative. 

 The basic idea is to link the expression  

0

0 )()(
lim

0 xx
xfxf

xx −
−

→
 

with its geometrical meaning, using the graphical visualization; and the further link 

between the first derivative and the formal expression of the tangent line. 

 The teacher, at a certain point, feels the necessity to graphically reinforce the idea 

of continuity, because for each step there is the intention to give a sense that goes beyond 

the formalism; to this extent he compares two graphs (see Figure 21 and Figure 22) 

 

 

 

 

 

Figure 21: Discontinuous function 

 

 

 

Figure 22: Continuous function 

 

 

 

 

underlying the fact that both present “gaps”, but the first represents the graph of a 

discontinuous function while the second represents the graph of a continuous function, 
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and stressing that the concept of continuity is related to the idea: “for small variations of 

x we have small variations of y”. 

 The teacher’s attitude reflects a scheme of abductive type, since it starts with the 

taking into consideration of a fact followed by the search of possible regularities 

justifying the observed fact. With the same approach, the teacher compares the following 

two graphs 

 

 

 

 

 

Figure 23: Differentiable function ∀x 

 

 

 

 

Figure 24: Function differentiable not ∀x 

 
emphasizing the concept that a differentiable function has always a tangent line; while in 

the case of the Figure 24, in the minimum value the function is not differentiable because 

in such point it doesn’t have a tangent line, or better, in this point it has a tangent line that 

immediately changes the slope from this way        to this way           . 

 The lecture follows with the question: How can we say that the first derivative of 

x2 is 2x? Don’t give the usual answer: the teacher said so, that’s all. The proof continues 

with the application of the definition and further theorems. 

 Another abductive approach is present when the teacher emphasizes a quite 

frequent mistake: Very often when you are asked to find where a function is 

differentiable, you usually calculate the first derivative and then you study the domain of 

it, and this set becomes the differentiability set of the function. For example, if you were 
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asked to find where the first derivative of lnx is defined, I hope nobody will do the usual 

thing: since the first derivative of lnx is 1/x, usually people answer ∀ x ∈ R \ {0}, 

because 1/x is its first derivative, defined in R \ {0}, be careful!…the first 

derivative…1/x…let’s say…do you remember when we introduced  the functions, we said 

that the function is defined by a law and by a domain , then this is the law (note: referring 

to 1/x) but the domain is not brought by it, it is difficult to say that the first derivative is 

defined for negative values, if the function is not defined there, is the problem clear? I 

mean, this function is defined only for the positive x (note: he draws the graph of lnx). 

 

 

 

 

 

 

Figure 25: Graph of f(x) = lnx 

 

Form here the teacher continues with further consideration about the domain of lnx. 

A subsequent abductive approach has been found with the introduction of the theorem 

linking the sign of the first derivative and the increasing or decreasing of a 

function…Well…a possible consequence of the derivatives, for example, is: if the first 

derivative is greater or equal to zero then the function is increasing (note: he writes the 

following formalization) 

f’(x) ≥ 0 ⇒    f is increasing    

more precisely        f’(x) ≥ 0    ⇔    f is increasing 

if the function is differentiable  (and he arranges in the following way) 

 

if   f     is differentiable 

f’(x) ≥ 0    ⇔    f   is increasing 

is it clear? 
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The theorem is obvious if you have understood what the derivative is: it is the slope of the 

tangent line (note: he imitates it with his hands). If the slope is positive that means that 

the function is going up (note: he imitates with his hands) if the slope of the tangent line 

is negative then the function goes down (note: again he shows it with the hands).  

 The attitude is then an abductive one, since there is the presentation of a fact  

(f’(x) ≥ 0 ⇔ f is increasing) and then there is the search of possible explanations, in this 

case the geometrical interpretation of the first derivative as the slope of the tangent line 

and its relationship with the graph of the function. The lesson continues presenting 

several approaches of abductive nature. 

5.2.2   Analysis through the tools of the Abductive System 

 
Excerpt 

Interpretation through the tools  
of the Abductive System 

  
For the Teacher 

 

 
For the Student 

 
 

 

 

 

 

Figure 21 
 
 
 
 
 
 
 
 

Figure 22 
 
The graph in Figure 21 
represents a discontinuous 
function, the graph in Figure 22 
represents a discontinuous 
function. 

FACT created by a 

PHENOMENIC ACTION guided 

by the need to make 

students understand the 

concept of continuity 

beyond the formal 

definition. It is expressed 

by a STABLE STATEMENT, 

because the teacher owns 

the cultural background 

that justifies such a fact. 

C-FACT expressed by an 

UNSTABLE STATEMENT, 

because the visual impact 

should not be enough. 
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For small variations of x we 
have small variations of y. 
 

Creation of a HYPOTHESIS 

through an ABDUCTIVE 

ACTION guided by the 

definition of continuous 

function. The hypothesis 

is stated by a STABLE 

ABDUCTIVE STATEMENT, 

because the definition 

seems to be enough to 

legitimate the hypothesis 

Creation of a HYPOTHESIS 

through an ABDUCTIVE 

ACTION The hypothesis is 

stated by a STABLE 

ABDUCTIVE STATEMENT, 

because the definition 

seems to be enough to 

legitimate the hypothesis 

 
 
 
 
 
 

Figure 23 
 
 
 
 
 

Figure 24 

 
The function in Figure 23 is 
differentiable everywhere, the 
function in the Figure 24 is not 
differentiable everywhere 
 

FACT created by a 

PHENOMENIC ACTION guided 

by the need to make 

students understand the 

concept of differentiability 

through its graphic 

meaning. It is expressed 

by a STABLE STATEMENT, 

because the teacher owns 

the cultural background 

that justifies such a fact. 

C-FACT expressed by an 

UNSTABLE STATEMENT, 

because the visual impact 

should not be enough. 

The function in Figure 24 is not 
differentiable in the minimum 
value because in this it doesn’t 
have a tangent line, or better, in 
this point it has a tangent line 
that immediately changes the 
 
slope from this way        to  
 
this way            

Creation of a HYPOTHESIS 

through an ABDUCTIVE 

ACTION guided by the 

relationship between 

differentiable functions 

and the geometrical 

meaning of the first 

Creation of a HYPOTHESIS  

It is expressed by a STABLE 

ABDUCTIVE STATEMENT, 

because the definition 

seems to be enough to 

legitimate the hypothesis 
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derivative. It is expressed 

by a STABLE ABDUCTIVE 

STATEMENT, because the 

definition seems to be 

enough to legitimate the 

hypothesis 

Well…a possible consequence of 
the derivatives, for example, is: 
if the first derivative is greater 
or equal to zero then the 
function is increasing (note: he 
writes the following 
formalization) 
 
f’(x) ≥ 0 ⇒    f is increasing    

more precisely        

 f’(x) ≥ 0  ⇔    f is increasing 

if the function is differentiable  

(and he arranges in the 

following way) 

if   f     is differentiable 
f’(x) ≥ 0  ⇔    f  is increasing 
 
is it clear? The theorem is 
obvious if you have understood 
what the derivative is: it is the 
slope of the tangent line 

FACT created by a 

PHENOMENIC ACTION guided 

by the need to show the 

sense and the need of the 

first derivative. It is 

expressed by a STABLE 

STATEMENT, because the 

teacher owns the cultural 

background that justifies 

such a fact. 

C-FACT expressed by an 

UNSTABLE STATEMENT, since 

for the student, so far, it is 

just the statement of a rule 

(theorem) 

 
The first derivative is the slope 
of the tangent line. If the slope is 
positive that means that the 
function is going up (note: he 
imitates with his hands) if the 
slope of the tangent line is 
negative then the function goes 
down (note: again he shows it 
with the hands). 
 
 

Creation of a HYPOTHESIS 

through an ABDUCTIVE 

ACTION guided by the 

relationship between the 

geometrical meaning of 

the first derivative and the 

graph of a function. It is 

expressed by a STABLE 

HYPOTHESIS. It is expressed 

by a STABLE ABDUCTIVE 

STATEMENT, because the 

visualization of the 

dynamic behaviour of the 

function seems to be 

enough to legitimate the 

hypothesis 
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ABDUCTIVE STATEMENT, 

because the visualization 

of the dynamic behaviour 

of the function seems to be 

enough to legitimate the 

hypothesis 

 

5.3    Brief analysis using the reference system continuity 

The idea of Continuity as it has been introduced by Garuti, Boero and Mariotti 

(1998), and redefined by Pedemonte (2002) like Reference System Continuity has made 

me think if I could use such a definition to look for possible continuities or breaks 

between the creation process of a c-fact and the creation of the hypothesis justifying the 

conjectured fact. Such a use of the “continuity tool” differs from its original utilization in 

the sense that I am not interested in looking for possible breaks or continuities between 

the conjecturing phase and the proving phase (in the manner intended by the researchers 

who defined the Cognitive Unity), but in possible breaks or continuities between the 

phenomenic actions and the abductive actions.. My aim is to understand if the continuity 

between the tools used in the construction of the c-fact and the construction of the 

hypothesis may facilitate this last step, or if, at this stage, such a continuity is irrelevant. 

The analysis of the protocols has evidenced that the students who successfully 

achieved a correct solution of the problem, not necessarily have maintained continuity 

between the phenomenic actions and the abductive actions. The following excerpts are 

examples of this phenomenon: 

Marco and Matteo (fixed point problem) 

In the conjecturing phase they build the conjectured fact, f probably has fixed 

points, guided by a didactical contract (as mentioned in the analysis of protocol through 

the tools of the Abdcutive System), while the hypothesis justifying the c-fact, the 

continuous function in [0,1] intersect the bisector line, has been constructed by an 

abductive action conveyed by a visual impact. In this case we can talk of break in the 
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Reference System Continuity, since we have a register based on “contract”, for what 

concerns the phenomenic action, and a register based on heuristics for what concerns the 

abductive action.  

A different situation is presented by Daniele and Betta, who achieved a correct 

solution of limit problem but which have evidenced continuity between phenomenic and 

abducitve actions: 

Daniele and Betta (limit problem) 

 In the conjecturing phase Daniele and Betta state that: In my opinion it is the same 

thing… 

Namely, doing 
h

hxfhxf
h 2

)()(
lim 00

0

−−+
→

       is the same as           
h

xfhxf
h

)()(
lim 00

0

−+
→

 

The c-fact is created by a visual impact with the graphic representation met for the limit 

of the standard difference quotient. In the same way, the hypothesis: The two limits use 

the same tools, has been created by an abductive action conveyed by a graphic 

interpretation. In this case we are in front of continuity between the two stages. 

For what concerns the Reference System Continuity (as defined by Garuti & al., 

1998; Pedemonte, 2002), the analysis of the protocols has evidenced the presence of such 

continuity since the means employed by the students in the construction of the 

conjectures are maintained in the evidencing process; the following excerpt is an example 

of this phenomenon. 

Alice and Roberta (fixed point problem) 

R3: A: (she draws the bisector line) therefore this is the (1,1) and (0,0). The idea 

becomes sign (Figure 14) 

 

 
Figure 14 
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R4: R: The fixed point must be between these two points …(and she signs the two points 

(0,0) and (1,1) going along the bisector line) 

Consideration of a fact: “the fixed point is on the segment with end points (0,0) and 

(1,1).” Such fact seems to be legitimated by the property previously considered (namely, 

the fixed points lay on the bisector line), and by the domain of f which is [0,1]. 

R5: A: Exactly…but it could have only these two points [(0,0), (1,1)]; if it were in this 

way (and she signs a concave function over the bisector line) therefore there is a fixed 

point for sure, because there are these two points of the bisector line (and she signs (0,0) 

and (1,1)) 

In this part of the conjecturing phase Alice and Roberta use perceptive, graphic aids. In 

the evidencing phase it is possible to find the same register, as it has show below. 

R27: A/R: then the function must start from 0 and have f(x) on this side and arrive at the 

point of abscissa x=1 and f(x) on this side then…there is the bisector line that goes 

through (0,0) and (1,1) 

R33: A: (Alice writes) then P(0, 0≤ y ≤1) because the domain… 

R34: R: it is defined from 0 to 1 

R37: A (Alice writes) it must exist too…P1 (1, 0≤ y ≤1), I would start with the limit cases, 

P(0,0) and P1 (1,1) or when (she goes with her finger from the point (0,0) along the 

segment 0-1 on the y-axes, and she does the same with the punt (1,1) downwards) 

At this point they write on their protocol: 

If the function f(x) goes through P(0,0), a fixed point is P; There could exist other fixed 

points in the case that the function intersects the bisector line. 

In the same way, if the function goes through the point P(1,1). In all other cases the 

function will have to go through a point with abscissa 0 and a point of abscissa 1 (for 

hypothesis). In these cases the ordinate of the point with abscissa 0 will have to be 0 ≤ y 

≤ 1, and the ordinate of the point with abscissa 1 will have to be 0 ≤ y ≤ 1. Being the 

function continuous for any path satisfying the aforementioned conditions will have to 

intersect the bisector line in at least one point (on the bisector line lie all the fixed 

points). 
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6.   DISCUSSION 
 
 
 

The analysis of the protocols has highlighted the presence of creative abductive 

processes. The importance of these kinds of processes in mathematics, but more generally 

in the sciences, will be discussed in the first section of this chapter. The existence of 

abductive processes in the students’ works also brings to light the necessity to wonder 

which elements may promote such a method of reasoning; to this extent the following 

three sections are dedicated to the analysis of three different conditions, which seem to 

enhance the manifestation of creative abductive processes. Briefly, these conditions are: 

1. A didactical contract that encourages and emphasizes creative processes aimed at 

understanding how things work in mathematics (paragraph 6.2). 

2. The chance of favoring (with an appropriate choice of tasks) transformational and 

perceptual reasoning (Harel, 1998) to pass from the phase of exploration to the 

phase of creative abductive act of reasoning (paragraph 6.3). 

3. The chance of favoring (with an appropriate choice of tasks) the “reference 

system continuity” between the conjecturing phase and the evidencing phase, as a 

facilitating condition for the success of the student, and therefore of his or her 

satisfaction to fulfill the requirement of the task (paragraph 6.4). 

Finally, the experimentation has been conducted with a particular sample of students 

(paragraph 6.5), since it was necessary to create the optimum conditions in order to study 

the manifestation of abductive processes and the role of the aforementioned factors.  

6.1 The role of abduction in sciences 

Thomas Huxley, the famous biologist of the second half of the nineteenth century, 

talked about retrospective prophecy to signify the inquiry in the relationship between the 

cause and effect of a phenomenon, meant as the proceeding backwards, trying to abduce, 

from what one sees, what may have caused said phenomenon. 
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Abduction is fundamental in the sciences which study the past: the historian draws 

the follow-up of the events from the documents and from the proofs that have come down 

to us; the archeologist goes back to the lifestyles of the ancient populations using what 

remains of their architectonical structures, or of their utensils; the paleontologist 

reconstructs the aspect of a prehistoric animal from the fragments of its skeleton and of 

its teeth, and thinking over these few elements he may decide if the animal is aquatic or 

terrestrial, if it is carnivorous or herbivorous, and so on. 

Huxley asserted that the method of the retrospective prophecy is innate in each of 

us since any daily action is based on the common sense consideration that a certain effect 

implies a certain cause. But the English scientist went beyond this, claiming that if such 

method is valid for some sciences, then it has to be valid for all of them. 

The Scottish doctor, Joseph Bell, who explicitly referred to the method of the 

retrospective prophecy, argued that the precise and intelligent identification and the 

taking into consideration of the smallest differences is the real essential factor in all 

correct diagnosis. On the other hand, as underlined many times in the scientific field, 

even the sharpest sense of observation, accompanied by memory and imagination, 

requires, to arrive at the target, a prepared mind from the cultural point of view and a 

readiness to associate in a coherent manner the available elements. Bell claimed that there 

are many eloquent and instructive signs, but they require a prepared eye to be identified. 

The purpose of this preamble is to underline the fact that an abductive attitude has 

probably an innate aspect based on common sense, as a natural inclination of the human 

learner who seeks to understand and to validate an observation; but on the other hand, as 

Simon (1996) says about transformational reasoning, we could also say about abductive 

processes, that "this inclination, like many other inclinations (the desire to draw what one 

sees, to find patterns in one's world of experience) must be nurtured and developed". 

It is therefore necessary to stress that the abductive processes met in the analysis 

of the protocols cannot be related to an inclination of the human nature alone, but they 

probably depend on the scholastic and extra-scholastic experience of the student. The 

following sections will consider some of the issues related to this scholastic experience. 
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6.2 The role of the didactical contract 

In the specific case of this research there are two didactical contracts to be 

considered: the first one, between teacher and student, and the second one between 

student and researcher.  

Student and Researcher: For what concerns my role, it is important to underscore that 

before being the researcher involved in this project, I am the Teaching Assistant of the 

course of Calculus the students are taking. Throughout the semester, the students and I 

will share three-hour lesson each week, and furthermore any office hour time they will 

consider necessary, during which they will be able to ask for further explanations of the 

exercises, or of the theory behind the lesson. 

The three-hour lesson is divided in three phases; during the first phase I will 

suggest some exercises on which the students will work autonomously, alone or in 

groups; they will freely decide which working groups to form, I will circulate through the 

classroom intervening only when the students request. From the beginning I emphasize 

that it is important they try to solve the problem with any means they believe correct; 

they do not have to be afraid to make mistakes, since they will not be judged for that, 

what it is important is their desire to understand and to do their best. The chance to call 

me and to ask me questions personally, gives the opportunity even to the most reticent 

students who in front of the class would not feel comfortable for fear of being judged for 

their questions. The first phase usually takes about two hours, as already said I continue 

to underline the importance to feel free to make mistakes, to ask questions, to exchange 

ideas with other working groups, to be unafraid to change strategies if they find out they 

are following an incorrect path, and finally that I will not continue second phase until I 

can determine that all of them have given the work their best efforts.. 

In the second phase, I ask students to show their solutions, leaving them 

completely free to decide if they want to do so or not; in the previous phase I had the 

opportunity to see the various attempts made by the students, to listen to their difficulties 

and perplexities; therefore I have been able to ascertain an idea of the important issues I 

have to touch on if they do not emerge from the solutions proposed by the students. The 

solutions will be written on the blackboard and together will discuss their correctness; in 



 155

this phase the formalization will not be considered the most important thing, but 

emphasis will be given to the correctness of the process. The last phase is used “to make 

the point of the situation”; the problem is summarized and the correct solutions, 

previously considered, are rewritten in a more structured way. 

Student and Teacher: after attending some of the teacher’s lectures, and having talked 

with him, I realized that one of the most important messages he wants to give to his 

students is that, beyond the formalization, he would like his students to understand how 

things work, especially from a geometrical point of view. An example given to me by the 

professor is the approach taken by the theorem linking the sign of the first derivative and 

the increasing and decreasing of the function. From one side, he uses the geometric 

interpretation of the first derivative and shows that if the  

 

tangent line has this inclination            therefore the function is necessarily  

 

 

increasing                                           and if the line has this inclination  

 

therefore the function is necessarily decreasing                                           . 

 

After having introduced the formula of Taylor, the professor underlines that from f(x) = 

f(x0) + f’(x0) (x-x0) + 1/2 f”(x0) (x-x0)2 + …, the expression f(x0) + f’(x0) (x-x0) represents 

the approximation of the first order of f(x), where f’(x0) gives the slope upwards or 

downwards; while the expression   f(x0) + f’(x0) (x-x0) + 1/2 f”(x0) (x-x0)2 is the 

approximation of the second order where f”(x0) is the coefficient of a parabola and 

therefore it gives the convexity of the function. In this case the professor told me that he 

proceeds with a formal proof (one of the few) showing it as a consequence of the 

Lagrange theorem, because he considers this proof quite simple and because it allows 

showing a very frequent mistake made by the students who very often state that f’(x) = 0 

⇔ f(x) is constant. 

To this extent, the teacher gives the following example 
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underscoring that they incorrectly apply the Lagrange theorem, which is instead 

applicable only to the function defined in one interval. 

The formalization is then applied when is considered quite simple to be understood and 

when it is useful for the understanding of a further concept. Following this approach, the 

teacher explains why if fn(x0) is the first of the derivatives different to zero and n is odd 

then the function does not have a maximum or minimum, while if n is even then we have 

to look for the sign of fn(x0). In this case he does not make any formal proof but he recalls 

again the Taylor formula and asserts that if n is odd then the approximation of the 

function has  

 

this kind of graph                      or                         while if n is even the graph is like           

 

or               and then we will need to look for the sign to understand if we have a 

maximum or a minimum. 

Furthermore, the analysis of the teacher’s lecture brought to light what I defined as an 

Abductive Scheme. By means of this definition I want to describe the teacher’s attitude 

adopted in some steps of the didactical transposition, when the teacher wants to convey a 

creative process, which is already known by him, though. The Abductive Scheme has the 

following structure: 

1st step: Proposal of an act of reasoning; 

2nd step: For the teacher the act of reasoning has value of fact, since he knows a-

priori its truthfulness or falseness; the statement expressing the fact is therefore a 

stable statement. For the student the same act of reasoning becomes a c-fact, 

expressed therefore by an unstable statement and consequently needing a 

hypothesis validating or refuting it. 

Besides the previously discussed reasons, another aim of the teacher is to avoid an 

Authoritarian Scheme (Harel, 1998) where the student uses, as validating justification, 

the assertion “it is true because the teacher said so.” The use of the term Abductive 

Scheme, is necessary in order to distinguish it from the definition of Abductive Process, 

as it has been defined in this research. The process utilized in the didactical transposition 
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can be defined as a “simulation of a creative process,” since the teacher already knows 

what to build and which hypotheses to use in order to validate or refute the constructed 

fact. 

Finally, it is also important to stress the kind of didactical contract related to the 

oral exam; the students know that to pass they need to show their understanding of what 

constitutes the base of a theorem, and they need to show their ability to demonstrate in a 

constructive way the solution to a problem, rather than repeating a well structured formal 

proof without demonstrating their understanding of said proof.  

Concluding from the analysis of the didactical contract, it is possible to claim that 

during the first year of the Calculus course, the two fundamental phases we work on are 

the conjecturing phase and the evidencing phase17, while the structuring phase, meant as 

formal arrangement, is employed when it is considered quite simple to understand or as a 

tool to facilitate the understanding of a further concept. 

The same idea is at the core of my research, and the two exercises given to the 

group of participants follow this line; in fact the participants were not asked to produce 

any particular “structured solution,” my aims being: 

a) To be coherent with the didactical contract. 

b) To leave the students completely free to decide their solution process and to 

autonomously evaluate the acceptability of their solution for the learning community, 

since many students are not necessarily persuaded by deductive proofs (Martin and Harel, 

1989; Chazan 1993).  

Concerning this last point, the students have shown their idea about proof as a tool 

that requires creativity, and with the role of validating a statement, and where hypotheses 

are means arising a-posteriori with the aim to explain in order to validate or refute a 

conjectured fact. 

From the analysis of the protocols, and that of the didactical contract we can 

conclude that the creative abductive attitude, met in the students, has probably been 

                                                 
17 To explain evidencing phase I refer to Harel’s definition of Proof Scheme: “By proving we mean the 
process employed by an individual to remove or create doubts about the truth of an observation;” and such 
process includes two sub-processes defined as Ascertaining and Persuading. Ascertaining is the process an 
individual employs to remove her or his doubts. Persuading is the process an individual employs to remove 
others’ doubts about the truth of an observation. 
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influenced also by their experiences with a didactical contract that encourages a certain 

kind of approach, like understanding how things work, the making of connections among 

mathematical ideas, and creating conjectures and validations of mathematical ideas. 

6.3 Perceptual, Transformational Reasoning and abductive process 

Through the analysis of the students’ work, it has been possible to observe the 

importance of the Transformational Reasoning18 and Perceptual Reasoning19. Many c-

facts or conjectures have been created by actions guided by visual impacts, or 

transformational reasoning, as shown by the following excerpt: 

R7: Matteo: How can we find this fixed point? 

They try to understand which the fixed points are, and they say:  

R8: a fixed point is here, another one is here… (see Figure 7) and they arrive at the 

conclusion that the fixed points lie on the bisector line. 

 

 
 

Figure 7.  Representation of the fixed points 
 

The construction phase of a possible theory is characterized by a graphic 

exploration. The graphic aid comes into this: Marco and Matteo, led by the squares on the 

paper, start identifying the fixed points with ones of the vertexes of the squares, because 

they satisfy the condition to have the same coordinates, and from the visualization in the 

                                                 
18 Transformational observations involve operations on objects and anticipations of the operations’ results. 
They are called transformational because they involve transformations of images – perhaps expresses in 
verbal or written statements – by means of deduction. (p. 258) 
19 The perceptual proof scheme is characterized by perceptual observations made by means of rudimentary 
mental images – images that consist of perceptions and a coordination of perception, but lack the ability to 
transform or to anticipate the results of a transformation. (p. 255) 

Then 
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discrete they go to the continuous, hypothesizing that if it is valid on the vertexes you can 

see, it will be valid for all the “sub-squares” which is made by. Marco and Matteo have 

the following definition of fixed point: (c, f(c)) with f(c) = c; therefore c is the “x” and f( 

c ) is the “y”; the subsequent step is represented by their statement that the fixed points 

are the ones that have “the x equals y” and the y represent it graphically as vertexes of the 

square of the paper; the idea that the point has the same coordinate allows Marco and 

Matteo to sign them on the vertexes of the square on the paper. Therefore, the idea is 

translated in sign, such a sign probably allows a new step, it visually suggests the passage 

from discrete to continuous…they probably realize, thanks to a visual factor, that 

between the square represented by the first square of the paper and the second one there 

are other infinite squares whose vertexes will represent fixed points. Therefore, they draw 

the line connecting these points; always realizing graphically that what they have just 

drawn is the bisector line of the I and III orthant and therefore there is a shift to the 

interpretation of the fixed point represented by the passage from f(c)= c to y = x (Again 

the sign is a source of thought. A dynamic that goes from outside to inside). There is an 

identification of the set of the fixed points with the bisector line of the I and III orthant. 

Therefore in the passage from the discrete to the continuous the graph becomes a 

source…meant as a new source of thought. 

[…] 

R17: Matteo: by contradiction we take ‘a’ that is greater and ≠ 0 and ‘b’ minor, now we 

say by absurd it doesn’t go to, at this point ‘a’ will take in this point here any point in the 

middle and that a ≠ y, therefore a point in which y > x always because in a first moment 

we said that it was greater therefore y must be greater than x and in this other little point 

here and here and here it will always be greater strictly greater we arrive here where it 

must be greater than x, at this point we have to take all these points here; its value in 1 

cannot be less than 1, equal 1 or more than 1 because it must stay in this interval here, 

therefore  it is absurd. (Figure 9) 
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Figure 9.    Matteo and Marco’s graphic attempts 
 

In these two excerpts we can observe the importance of the visual impact, meant as the 

graphic aid employed to build the conjectures, and the transformational reasoning that 

enhances the evidencing process. In terms of the proof schemes, this work raises a new 

issue, in the sense that in Harel’s work the problem is tackled mainly from an evidencing 

point of view while in the abductive system I am proposing here, it takes into 

consideration the conjecturing face of the process of proving.  

6.4 Reference System Continuity and abductive reasoning  

The analysis of the protocols has brought to light that it is not possible to relate 

successful students and continuity between the phenomenic action and abductive action, 

since it was possible to meet success both in the case of continuity and break. 

On the contrary, the analysis of the protocols has highlighted the presence of 

“reference system continuity” (the one considered by Garuti, Boero & Mariottti, 1996; 

what has been defined as “cognitive unity of theorems”), while it has not been possible to 

make an analysis from the point of view of the “structural continuity” (Pedemonte, 2002), 

since the research was based, as previously mentioned, on the conjecturing and 
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evidencing process and not on the structuring one. Concerning the reference system 

continuity, the search is done in a narrower process, namely, in the two phases that 

precede the final step related to the deductive structuring of the proof; the analysis has 

evidenced the presence of such continuity, as shown by the following example: 

In Daniele and Betta’s protocol about the exercise on the limit, there are both a graphic 

and heuristic approaches in the conjecturing phase, which are used in the evidencing 

phase as well; as evidenced by the following excerpt. 

R1: D: x0+h... 

R2: B: f (x0)… 

R3: D: in my opinion it is the same thing… when you do the limit of the difference 

quotient, you do 
h

xfhxf
h

)()(
lim 00

0

−+
→

…this minus this over h… 

He signs on the graph the vertical and the horizontal segments (see the red segments in 

figure 10) 

 

 

Figure 10.   Daniele’s graphic interpretation of 
h

xfhxf )()( 00 −+
 

 

R4: D: (note: he signs on the drawing done on the protocol, this ⏐ divided by this ⎯) 

R5: B: because f(x0 + h)... 

R6: D: minus f(x0)...is this 

R7: B: Ah…OK…ours would be this (see the red segments in the figure 11) over 2h…it is 

the same thing… 
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Figure 11.   Graphic interpretation of 
h

hxfhxf
2

)()( 00 −−+
 

 

R8: D: therefore…it would be h→ 0….how much is this?….eh…it will be the slope of the 

tangent line… 

R9: B: namely…the first derivative 

R10: D: in x0 

 

At this point they explain to me their solution to me: 

R16: B: this is equal to this (they indicate the two limits…)…we done it graphically (i.e., 

Betta indicates 
h

hxfhxf
2

)()( 00 −−+
 and what they have highlighted graphically) 

R17: D: I mean, we do this…it would be the ratio between this difference ⏐ and this one 

⎯ and in our case it would be the ratio between this difference ⏐ and this one ⎯ , 

therefore, x0 + h –(x0 – h) that would be 2h…and this one that would be f(x0 + h) – f(x0 – 

h)...therefore, the limit for h that goes to zero would be…I mean both go to x0 (note: he 

shows it to me on the graph).  

 

The central point of the “reference system continuity” lies in the transitional phase 

from conjecturing to persuading; many times the unity is broken in this passage. The 

protocols considered in this research have revealed the presence of unity; more precisely, 

the students’ works evidenced that, those who made a correctly reasoned conjecture, 

then, have arrived successfully at the evidencing phase. Such a phenomenon may be 

explained by the typology of the proposed exercises, in the sense that the elements used 

in the conjecturing phase can be used also in the evidencing phase. 



 163

6.5 The Sample 

The experimentation has been conducted with a particular sample of students, 

since it was necessary to create the best conditions in order to study the manifestation of 

abductive processes and the relationships between these processes and the 

aforementioned factors. The sample taken into consideration, then, is not casual: since the 

students voluntarily offered to participate in the project, and these students are the 

students who positively accepted such a challenging situation. Nevertheless, for what 

concerns the didactical implications, I hypothesize that, since the creative abductive 

processes don’t seem to be an attitude of a particular elite of subjects (as evidenced in 

section 1), what has happened with a particular sample of students may be extended to a 

larger population of students, if the same aforementioned conditions are created. 
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7   CONCLUSIONS 
 
 

 The Abductive System has been created with the aim of providing some tools, 

which could identify and describe possible creative abductive processes students 

implement when they perform conjectures and proofs in Calculus. The issue of creativity 

in the hypothesis creation process led me to consider Charles S. Peirce’s work and his 

definition of Abduction. Subsequently, I realized that the definition of abduction, as 

given by Peirce, was not sufficient to frame and analyze potential student creative 

processes, since Peirce’s abduction referred to the creation of a hypothesis that could 

explain an observed fact 20; while students, very often, are confronted by problems with a 

direct question, which means the solver not only has to find hypotheses justifying a fact, 

but also has to look for a fact to be justified. This particularity generated the need to 

analyze the abductive processes under a new light, in the sense that the nature of the fact 

and the connections between hypothesis and fact have to be considered in a different way 

than the manner proposed by a standard abductive process (this relationship will be 

explained later in the description of the Abductive System). 

 The construction of my framework has been also influenced by Cifarelli’s 

approach to the concept of abduction. His attention is focused on the abductive inference 

as a tool to enhance the search for further strategies when the application of a previous 

solution does not work; therefore the researcher is interested in the role such a process 

plays on the problem-solving activities. 

 Reexamining the facts, in Peirce’s abduction the fact is a tangible observation: the 

fossils far in the interior of the country, the white beans on the table; while, for Cifarelli 

the fact may also be represented by something that happens (see example about Marie’s 

solution, in the core of the research chapter). This last point of view gave me the impetus 

                                                 
20 In an abductive process a “starting fact” is always considered and it is always true. 
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to reflect on a new interpretation of the typology of abduction, where the fact is also 

represented by a strategy/procedure or regularity. 

 The result of all previous considerations has been the construction of the 

Abductive System whose elements are {facts, conjectures, statements, actions}. 

For fact I adopted the definitions of Collins’ Dictionary: (1) referring to 

something as a fact means to think it is true or correct; (2) facts are pieces of 

information that can be discovered. 

For conjectures I adopted the definition given by Webster’s dictionary, conjecture 

is an opinion or judgment, formed on defective or presumptive evidence; probable 

inference; surmise; guess; suspicion. 

The conjectures assume a double role of: 

1. Hypothesis - an idea that is suggested as a possible explanation for a particular 

situation or condition. 

2. C-Fact (conjectured-fact) - final answer to the problem, or answer to certain steps 

of the solving process. 

Statements divided into the three following categories express Facts and Conjectures: 

 

1. Stable statements 

2. Unstable statements 

3. Abductive statements 

 

A stable statement is a proposition whose truthfulness and reliability are guaranteed, 

according to the individual, by the tools used to build or consider the fact or conjecture 

described by the proposition itself. Namely, the truthfulness depends directly on the tools 

employed in the construction phase (E.g. a “visually-based” fact: the validity of the 

proposition describing the phenomenon is justified by a visual perception). 

An unstable statement is a proposition whose truthfulness and reliability are not 

guaranteed, according to the individual, by the tools used to build or consider the 

conjecture described by the proposition itself. Namely, the tools used in the creation 

phase are not sufficient for the solver to consider the conjecture described by the 
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proposition as being definitively true. The consequence of this is the search of a 

hypothesis, and / or an argumentation that might validate the aforementioned statement. 

An abductive statement is a proposition describing a hypothesis built in order to 

corroborate or to explain a conjecture. The abductive statements too, may also be divided 

into stable and unstable abductive statements. The former, according to the solver, state 

hypotheses that do not need further proof; the latter require a proof to be validated. 

It is important to clarify that the definitions of stable21 and unstable statement are 

student-centered, namely, the condition of stable and unstable is related to the subject: 

what can be stable for one student may represent an unstable statement for another 

student and vice versa; not only that, but the same subject may believe stable a particular 

statement at a certain point of their scholastic career, and this may become unstable later 

on when their cultural knowledge base of structured mathematical knowledge increases 

(e.g.; she or he learns new mathematical systems; new axioms and theorems). 

Furthermore, a stable statement may become unstable, inside a similar problem-solving 

process, not because the student is convinced of that, but for a “cultural contract”; 

namely, the student may recall their scholastic experience and remember that a statement 

is considered stable if it is justified inside a precise mathematical system supported by 

axioms, and theorems; thus they will analyze the tools employed for verification if they 

satisfy such conditions. Another situation leading the student to reconsider a statement 

from stable to unstable is the “didactical contract”; the subject might believe the visual 

evidence to be sufficient in order to justify a conjecture, but the intervention of the 

teacher could underline its insufficiency and therefore the student would find themselves 

looking for new tools. Furthermore, the same statement may transform from unstable to 

                                                 
21The concepts of stable and unstable are related, moreover, to the mathematical context. In Euclidean 
Geometry if a statement is stable, the problem will be only to find the tools to prove it. Namely, in 
Euclidean Geometry it is enough to find few variations of “targeted” drawings to guarantee the stability of 
a statement. In Arithmetic the problem is more complex; it is sufficient to think of Goldbach’s conjecture. 
Goldabach’s original conjecture (sometimes called the “ternary” Goldbach conjecture), written in 1742 in a 
letter to Euler, states “at least it seems that every number that is greater than 2 is the sum of three primes”. 
Note that here Goldbach considered the number 1 to be prime, a convention that is no longer followed. As 
re-expressed by Euler, an equivalent form of this conjecture (called the “strong” or “binary” Goldbach 
conjecture) asserts that all positive even integers ≥ 4 can be expressed as the sum of two primes. Not only a 
proof has not been found yet, but also, even though many millions of even numbers have satisfied such 
property, we are still not sure of its validity. 
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stable inside a similar process because the subject follows the mathematician’s path: they 

starts browsing just to look for any idea in order to become sufficiently convinced of the 

truth of their observation, then they turn to the formal-theoretical world in order to give 

to their idea a character of reliability for all the community (Thurston, 1994). 

Behind any statement there is an action. Actions are divided into phenomenic actions 

and abductive actions. A phenomenic action represents the creation, or the “taking into 

consideration” of a fact or a c-fact: such a process may use any kind of tools; for 

example, visual analogies evoking already observed facts, a simple guess, or a feeling, 

“that it could be in that way;” a phenomenic action may be guided, for example, by a 

didactical contract or by a transformational reasoning (Harel, 1998). An abductive action 

represents the creation, or the “taking into account” of a justifying hypothesis or a cause; 

like the phenomenic action, they may be conveyed by a process of interiorization (Harel, 

1998), by transformational reasoning (Harel, 1998) and so on.  

The Abductive System could be schematized in the following way: conjectures 

and facts are ‘act[s]} of reasoning’ (Boero 1995) generated by phenomenic or abductive 

actions, and expressed by ‘act[s] of speech’ (ibid) which are the statements. The 

adjectives stable, unstable, and abductive are not related to the words of the statements 

but to the acts of reasoning of which they are the expression. Hence, the only tangible 

thing is the act of speech, but from there we may go back to a judgment concerning the 

act of reasoning thanks to the adjectives given to the statement. Finally, for two different 

subjects the same statement may be stable or unstable. Therefore, two people may 

achieve the same act of reasoning and judge it by a different method. 

At the base of the construction of the Abductive System there is also the intention to 

show that the creative processes own some components, and to separate these processes 

from the belief that it is not possible to talk about it because it is something indefinable 

and only comparable to a “flash of genius”. The common denominator with Peirce’s 

work is the philosophic spirit on which both works are based. Peirce wanted to legitimate 

the fact that abduction is a kind of reasoning along with deduction and induction, in 

contrast with many philosophers who regard the discovery of new ideas as mere 
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guesswork, chance, insight, hunch or some mental jump of the scientist that is only open 

to historical, psychological, or sociological investigation. 

The research questions leading my work are: 

1. Are the definitions of abduction, already given, sufficient to describe creative 

processes of an abductive nature? Or, is a broader definition of abductive process 

needed to understand some creative students’ processes in mathematics proving? 

If so, what is that definition? 

2. Is one’s certainty about the truth of an assumption an indication of an initiation of 

abductive reasoning in her or his process? Namely, how important is the level of 

confidence of the constructed answer in guiding an abductive approach? 

3. Is there continuity between the cognitive “tools” one uses to build a conjecture 

and the means one uses to establish its validity? 

4. Which elements convey an abductive process? In particular, does transformational 

reasoning facilitate an abductive process? 

 

The definition of Abductive System allows the researcher to analyze a broader spectrum 

of creative processes than those covered by the already given definitions of abduction, 

and the experimental phase revealed to show the presence of those components I have 

given a name inside the Abductive System. 

The analysis of the data through the tools of the Abductive System allowed answering to 

the previous questions. Indeed the Abductive System, in general, is a possible answer to 

the first question, having broadened the definition of abduction and the distinction 

between stable and unstable statements probably guide the way to a possible conclusion 

for the second question. When an act of reasoning is expressed by an unstable statement, 

the subject needs to find a hypothesis that could validate or confute it. 

 Regarding the third question, it has been possible to find the presence of 

“reference system continuity” (Garuti, Boero & Mariotti, 1996; what has been defined as 

“cognitive unity of the theorems”), but it has not been possible to make an analysis from 

the “structural continuity” (Pedemonte, 2002) point of view, since the research has been 

based on the conjecturing and evidencing process and not on the structuring phase, meant 
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as that process of deductive arrangement; in fact, the participants in the research were not 

asked to produce any particular “structured” solution; my aim being to leave the students 

completely free to decide their solution process, and to autonomously evaluate the 

acceptability of their solution for the learning community. 

 It is important to underline that “the reference system continuity” has probably 

been favored by the kind of the problems proposed to the students, in the sense that the 

elements used in the conjecturing phase could be used in the evidencing phase, as well. 

The last question brings to light the issue of the role of the transformational reasoning (as 

defined by Harel, 1998) in facilitating a possible abductive process; the research has 

confirmed that perceptual and transformational reasoning have played a fundamental role 

in the construction of both conjectures (c-facts and hypotheses) and facts. 

There is a further factor we need to take into consideration, which is the typology 

of the sample; it cannot be defined as a casual sample, since the students voluntarily 

offered to participate in the project, and probably were those students who positively 

accepted a didactical contract that encourages an approach promoting the understanding 

how things works, the making of connections among mathematical ideas, creating 

conjectures and validations of mathematical ideas, rather than a formal deductive 

approach. Nevertheless, regarding what concerns the didactical implications, I 

hypothesize that, since the creative abductive processes don’t seem to be an attitude of a 

particular elite of subjects, what has happened with a particular sample of students may 

be extended to a larger population of students, if the same previously mentioned 

conditions are created. 

Furthermore, the creative abductive attitude met in the students, cannot be 

considered only an inclination of human nature, but it also probably depends on the 

scholastic and extra-scholastic experience of the student, and certain kinds of didactical 

contract (like those discussed in this work) may positively influence such creative 

processes. 
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7.1 Educational implications 

The Abductive System may be considered from two perspectives. From the 

cognitive point of view, it gives the researcher the tools (i.e.; the elements of the 

Abductive System) to recognize students’ creative attitudes during their problem - 

solving processes. From a didactical point of view, it points to those teaching styles 

which enhance an “abductive atmosphere” (e.g.; the lecture analyzed in this research), 

when the teacher does not just deliver the knowledge but he or she creates those 

conditions where the immediate creation of a fact entails “the necessity” to build or to 

look for a justifying hypothesis, generating in this way creative mechanisms. 

Secondly, the analysis employing the tools of the Abductive System has brought 

to light the importance of the proposal of “open problems” where the continuity of the 

cognitive tools and the involvement of transformational and perceptual reasoning are 

guaranteed, since they seem to improve creative processes of an abductive nature. 

Therefore, this framework could help teachers to be more conscious of what has to be 1) 

recognized, 2) respected, and 3) improved upon, with respect to a didactic culture of 

“certainty,” which follows preestablished schemes. 

 In terms of Proof Schemes the Abductive System could open a new chapter of the 

schemes, reconsidering them from the conjecturing point of view, not only from the 

evidencing one. For what concerns further research issues, it would be interesting to 

consider two different random groups of students. One group would attend a Calculus 

course based on a didactical contract similar to that analyzed in this research, and the 

other group would attend a more traditional Calculus course, where the frontal lecture 

with a deductive approach is preferred. With the same procedure followed in this 

research, the two groups would be given some problems to be solved, and their works 

would be analyzed through the tools of the Abductive System. The focus of the new 

investigation would be represented by the study of the differences in the solving 

processes between the two groups, and how different kinds of didactical contract may 

influence creative processes in the construction of conjectures and proofs. 
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Appendix A: Questionnaire 

 
 
 

1st question:   CHECK THE FORMS OF REASONING YOU KNOW 
 1st year of college 

(out of 89) 
Induction  9 
Deduction 9 
Induction, and Deduction 45 
Induction, Deduction, and for Contradiction 10 
Induction, and for Contradiction 1 
Induction, Deduction, and Intuition 3 
Induction, and Intuition 1 
Induction, Deduction, and Philosophy 1 
Induction, Deduction, for Contradiction, and Logic 1 
Induction, Deduction, the Tossing of a coin 1 
Deduction , and Intuition 1 
At least Induction, and deduction 61 
Only deduction 9 
Only induction 9 
For contradiction 12 
For intuition 5 
 
COMMENTS 

The majority of students (52%) knows both Induction and Deduction; followed by 

students who know not only Induction and Deduction but also proof by contradiction. 
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2nd question:     AS STUDENT, DO YOU THINK THE STUDY OF PROOFS TO BE NECESSARY? 
  1st year of 

college 

(out of 89) 
TYPE OF JUSTIFICATION STUDENTS’ TRANSCRIPTS NUMB OF 

STUDENTS 
They help to understand theorems and 
their meaning 

17 

They make the content clearer and easier 
to remember 

4 

They explain certain assumptions, and why 
certain facts happen 

3 

They validate the problem, they convince of 
its validity 

7 

They help to create mental schemes and 
they make you to use them correctly 

4 

Because you learn a way to think absolutely 
connected with the study of mathematics 

1 

As a tool to learn to think 1 
As a tool useful to solve problems 6 
As a chain-mechanism: “with one you can 
learn all of them” 

1 

As a tool to deepen 1 
They help to understand better the 
reasoning used to arrive to the given 
conclusion 

12 

 
1 

 
 
 
 
 
 
 

Yes 

As a generic example to understand the 
particular rule (for example Rolle) 
 58 
  
Because they are difficult and they  are 
just useful for themselves: “They are 
difficult to understand and there is no 
interest to understand how a certain thesis 
has been proven”. “It is useful just to 
understand a formula and that’s all” 

2 

They are not necessary to solve the 
problems 

1 

 
 
 
 
 
 

No 
 
 
 
 Useful only for mathematicians  1 
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Because it is a mnemonic study 1  
 5 
  
When they are useful to understand better 
the theorems 

11 

When the reasoning process is not 
immediate 

3 

When it represents a tool for reasoning 1 
When it is not just useful for itself: 
“When the concepts are fundamental to 
understand Calculus/Analysis”. 
“When the statement to be proved is not 
just useful for itself but it would result as 
a tool for future results” 
“When the theorem is important” 
“When they are essential for the learning 
and the good result of a test” 

 
 
 
5 

As a tool of exploration 1 
When they do not make the tings more 
complicate. When They are too complicated 
they don’t have any didactical value 

 
4 

 
 
 
 
 
 
 
 
 

Sometimes 

Only when they really help to understand an 
issue 

1 

  26 
 
COMMENTS 
58/89 answered Yes, 5/89 answered No, 26/89 answered Sometimes. 

Most of the students (65%) think of proofs as a tool to better understand theorems, their 

meaning, and the reasoning involved into the process of proving. The remaining part is 

mainly concerned with the idea that proofs are necessary because they validate the 

problem and convince of its validity, or as a tool useful to solve problems, to create 

mental schemes to be used in problem-solving, furthermore they explain the why of a 

fact, and finally they make a context clearer, and easier to be remembered. 

Most of the students who answered “Sometimes” (29%) states that proof is 

necessary when it helps to better understand a theorem. 

Very few (6%) are convinced that proofs are not necessary at all. 
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Conclusion: the main idea about the necessity of a proof is based on its usefulness to 

help oneself to understand better a theorem; therefore proof is seen as an explanatory 

tool. 

3rd question        WHICH KIND OF RELATIONSHIP LIES BETWEEN HYPOTHESIS AND THESIS 
IN THE CONSTRUCTION OF THE STATEMENT OF A THEOREM? 

  1st year of 
College  

(out of 89) 
TYPE OF JUSTIFICATION STUDENTS’ TRANSCRIPTS N. OF 

STUDENTS 
It depends   

Many times you start from the thesis 
and then you build the hypothesis useful 
to prove the validity of the thesis itself 

 
1 

Sometimes it happens that you have an 
intuition on a thesis and subsequently 
you build the hypotheses that make the 
thesis true; sometimes you start from a 
set of hypotheses to arrive at some 
results. 

 
1 

Sometimes you know the thesis and the 
hypotheses serve to prove the validity 
of the thesis; other times from the 
hypotheses you infer the thesis. 

 
1 

Usually you know first the hypotheses 
to reach the thesis, but you may have 
also a thesis to be reached and you need 
to find the hypotheses to make the 
starting point valid. 

 
1 

Usually the hypothesis comes before 
the thesis, but sometimes it may be 
necessary to look for which hypotheses 
may satisfy a particular thesis 

 
1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The thesis is considered a 
starting point from which 
you build the hypotheses 
to prove the validity of the 
thesis itself.  
 
 
 
 
 
 
 
 
 
 

Sometimes the thesis is already known 
and the proof is used only to explain the 
why of the validity of the thesis. 
Other times starting from the 
hypothesis you reach the proof of the 
theorem that was previously unknown. 

 
 
1 
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On the situations. Usually you start 
from an observation; then you see (for 
example) that certain numbers behave 
with certain properties and you can 
build the hypotheses that determine 
such properties; but it also can happen 
the opposite. I think it is more common, 
in the science, to start from the thesis 
(for example; in physics you first 
observe the phenomenon); but nothing 
prevents the opposite process to 
happen. 

 
 
 
 
1 

 

Sometimes you know the thesis and 
hypothesis is necessary to prove that 
the thesis is valid; sometimes from the 
hypothesis you deduce the thesis 
arriving at the concept 

 
1 

 
 
 
 
 
 
The awareness of the 
difference between the 
construction of a proof and 
its ‘transcription’ 

I think that there is a difference 
between the moment you state a 
theorem (usually the hypotheses are 
listed in an orderly way, then the thesis 
go after) and the construction of the 
statement of a theorem. This one 
follows a very laborious and “untidy” 
process; to this extent, sometimes you 
may have in your mind a result and you 
need to look for hypotheses from which 
you obtain the result; other times you 
start from certain hypotheses and you 
try to understand what they lead to. 
Besides, in the famous “if and only if” 
hypotheses and theses exchange the 
role. 

 
 
 
 
 
 
1 

 
The certainty of the 
observed fact and the 
difficulty of the 
construction of the 
hypotheses needed to 
explain it 

Many times you know where you want to 
arrive, but you don’t know where to 
start. 

 
2 



 184

 
There doesn’t exist a precise law, it 
depends on the kind of research one 
does and on the cultural background one 
owns. 

 
1 

On the kind of reasoning. If it is 
inductive the hypothesis comes first, 
otherwise the thesis is the one coming 
first. 

 
3 

On the method that has been used. If 
deductive the hypothesis comes before 
the thesis, if inductive the thesis comes 
before the hypothesis 

 
1 

 
 
 
 
 
 
Depending on the cultural 
background and the kind 
of reasoning 

It depends on the system of reasoning. 
Example: for contradiction I suppose a 
thesis to be true in order to verify the 
validity of the hypothesis 

 
1 

 
The generality is given by 
‘from hypothesis to thesis’, 
the particular is ‘from 
thesis to hypothesis’ 

If you are looking for something in 
particular, I think the thesis comes 
always before the hypothesis. In the 
case you want to build, to expand or to 
deepen a theorem, I think the 
hypothesis comes first. 

 
 
1 

 
It depends. A theorem often rises from 
an empirical experience, and therefore 
the thesis rises before the hypothesis. 
But it is also true that other times a 
theorem is the result of a reasoning 
that starts from very precise 
hypotheses to reach the theses which 
can be surprising and unexpected. 

 
 
 
1 

 
 
The idea that the thesis has 
a more empirical 
connotation in the sense 
that it comes from an 
observed fact. Instead 
hypothesis has a more 
cognitive connotation, 
because it is the 
construction of an act 
reasoning  

Generally the thesis comes before the 
hypothesis (you try to proof something 
that will be useful for other purposes), 
but it can happen that from particular 
hypotheses a new correct thesis, 
casually, may rise. 

 
 
1 
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It depends if you infer the thesis from 
a group of hypothesis (a trivial and not 
very useful case) or if you need a thesis, 
or if you want to verify it, and you look 
for the hypotheses which you infer the 
thesis from (much more common case). 

 
 
2 

It depends on where you want to start 
from. If you suppose the existence of a 
theorem or if you suppose some 
conditions in order to arrive to a 
theorem that you ignore the existence 
of. 

 
 
1 

 
 
 
The distinction between 
the two cases: when from a 
set of hypotheses you infer 
a thesis, and when given a 
fact (thesis) you look for 
some plausible hypotheses 
to infer the thesis from. 

It depends if you have to prove the 
theorem, or if you have to find it. 

3 

 
You can nor start a-priori conceptually 
from a hypothesis and immediately to 
analyze the thesis; neither can you lead 
the reasoning starting from the thesis 
to reach the hypothesis. 

 
 
1 

In my opinion there isn’t a fixed 
relationship between thesis and 
hypothesis, and this is proved above all 
by those theorems in which you can 
exchange hypothesis and thesis 

 
 
1 

Sometimes you start from the 
hypotheses to reach the thesis and 
sometimes you start from the thesis to 
reach the hypotheses 

 
3 

 
 
 
 
 
There is not a particular 
relationship between 
hypothesis and thesis 

It depends because for example for 
what concerns physics, the phenomena 
to be studied usually are the thesis, it 
depends on the scientist to prove how it 
may happen formulating some 
hypotheses. On the other hand, 
sometimes you think if specific 
hypotheses lead or not to a thesis, and 
from there, through mathematical steps 
you arrive at the thesis 

 
 
1 

  32 
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The thesis always comes 
before the hypothesis 

  

In the thesis you must hypothesize 
conditions that make the thesis be 
verified. 

1 

The thesis is the starting point, the 
“question” that rises after having 
observed a phenomenon. Instead the 
hypotheses serve to prove if the 
thesis is valid or not 

 
1 

Some theorems to be proved need the 
thesis be denied, therefore the thesis 
is used as a hypothesis to verify the 
truthfulness 

 
1 

 
 
 
 
The hypothesis as a tool to 
justify, explain the 
hypothesis  

To proof a thesis you make a 
hypothesis and then you look if it is 
true 

1 

 
Because the thesis is the “problem” 
you have to solve, the hypotheses are 
made (imposed) to arrive at the 
solution 

 
2 

First you “find” a property or a result 
that if it were valid it would be 
favorable. Then, you try to proof it 
under opportune hypotheses. 
Subsequently you may try to reduce 
the number of the hypotheses and 
check if the theorem is still true. 

 
 
1 

First I decide what has to be proved 1 
Anybody, before of choosing to use 
particular tools and conditions 
(hypotheses) to prove his/her own 
conviction, has to have first a 
conviction that his/her own genius 
judges to be correct 

 
 
1 

 
 
 
 
 
 
 
 
 
 
 
 
The thesis as a fact, the 
problem to be solved. There 
is a sequence between thesis 
and hypothesis. The presence 
of a thesis is the necessary 
condition to have a 
hypothesis. 
 
 
 
 
 

The hypotheses of a proof are built 
afterwards, because they put some 
“limits” (they are “characteristics”) 
for the statement of the theorem 

 
1 
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Because the statement represents 
what you wanted to prove, therefore 
the thesis 

1  
 
 

Because the aim is always to prove the 
validity of a thesis, checking among 
the hypotheses and the data I have 
the ones which allow me to do so 

 
1 

  12 
 

The hypothesis always 
comes before the thesis 

  

The hypothesis is already known, the 
thesis has to be proved starting from 
the hypothesis 

1 From known to unknown. 
Therefore you start from 
something you already know 
to prove something that is 
not still certain. The 
hypothesis is something 
already known and from 
there you start to prove the 
thesis.  
But what is the thesis? Is it 
already known but it is not 
certain and through the proof 
and the known hypothesis 
you arrive to the validity of 
the thesis? Or do you find 
out the thesis through the 
proof? 
The question is what do we 
prove if we don’t know what 
to prove? 

From known things you prove unknown 
things 

 
1 

   
In the hypothesis there are the data 
we know about 

2  
The hypothesis is the “place” 
where there are the data you 
know. Namely, the 
hypothesis is the “owner” of 
the data you need for the 
proof. 

Because from initial conditions it is 
possible to reach a final thesis, on the 
contrary not always is it possible to 
reach some initial conditions starting 
from the final thesis 
 
 
 

 
1 
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You always need first a hypothesis 1 
You need to start from the hypothesis 
to prove the thesis 

1 

Without hypotheses you can’t arrive 
at any thesis 

1 

On the basis of my hypothesis I state 
my thesis 

1 

The thesis needs an a-priori 
hypothesis 

3 

If there weren’t a hypothesis, why 
would you state a thesis? 

1 

Without the hypothesis you can’t 
reach the thesis 

3 

Without an hypothesis you can’t have 
a thesis 

1 

The hypothesis gives the basis in 
order to prove the thesis and for its 
proof, therefore it is essential 

1 

Because to prove a thesis you use a 
hypothesis 

1 

 
 
The necessity of the 
hypothesis to prove the 
thesis. 
Probably rose from the way 
proofs are presented at 
school. 
 
 
 
 
 
 

To prove a thesis you need a 
hypothesis 

1 

   
This is always a case of 
hypothesis as an essential 
tool to make a proof. But 
there is something more 
compared with the previous 
answers: it is explained the 
reason why the hypothesis is 
important. It represents the 
basis to reason about in order 
to check the validity or 
falseness of the thesis. 
 
 
 
 
 
 
 

Because the hypothesis represents 
the data, the bricks on which it is 
possible to reason in order to find out 
the truth or the falseness of a thesis 

 
 
1 
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From the hypothesis or hypotheses 
applying mental-logical steps or 
theorems already known and proved, 
or axioms, you arrive always at the 
thesis no matter complicated the 
theorem is. 

 
1 

Because it is a logical implication 
(inference) 

 
2 

Here we can see the 
description of the structure 
of a proof as it is shown at 
school, and not of its 
creation. According to these 
answers a proof is a 
sequence of logical 
implications which go from 
hypotheses to thesis, but 
nothing is said about its 
creation, just only its 
structure as a finished 
product. 

The thesis is the consequence of a 
proof that is based on some initial 
data 

 
1 

   
Because first you state some 
hypotheses and then you try to reach 
the supposed thesis 

1 

The thesis is the consequence of a 
proof that is based on some initial 
data 

1 

You make a hypothesis and then you 
verify it with experiments to see if 
they are true. Only then you make the 
thesis (It is Galileo’s model) 

1 

Because the thesis arises from the 
work I do on what the hypothesis says 

1 

Because you always make a hypothesis 
first and then after several proofs 
you may give a thesis 

1 

Again there is the idea of the 
structure of a proof as a 
sequence of steps, that start 
from hypotheses to end into 
a thesis. Such a rigid 
structure is so predominant 
the student doesn’t realize 
that himself assumes the 
presence of a thesis before 
the statement of the 
hypotheses (“the supposed 
thesis”). Nevertheless, a 
presence of a thesis before 
the hypotheses seems not to 
be part of the process of 
proving. 
It also looks like hypotheses 
live of their own life; the 
thesis rises as a consequence 

Given some statements and particular 
conditions, particular situations follow 

1 



 190

of the reasoning made about 
the hypotheses. But why 
such hypotheses are made or 
taken on consideration we 
don’t know… 
Therefore, hypothesis is a 
necessary condition for the 
existence of a thesis, due to 
the fact that this one rises as 
a consequence of the 
reasoning made on the 
hypothesis, but why do such 
hypotheses come out, pushed 
by what? 

First I state the hypothesis and from 
that I reason to state my thesis 

1 

   
Hypothesis as a start point Because the hypothesis is a base to 

start from 
1 

   
It seems that the logical 
sequence is “first doubt and 
then certainty”. To this 
extent the hypothesis 
represents the doubt and the 
thesis is the certainty, 
therefore the logical 
sequence of the two. 

The hypothesis represents a doubt 
and the thesis is its confirmation 

 
 
1 
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You make some hypotheses and then 
you verify with experiments if they 
are validated, only then you state the 
thesis 

 
1 

In this case the term 
“supposition” and 
“hypothesis” have the same 
meaning. It seems that the  
relationship between 
hypothesis and thesis is the 
following: the thesis is just a 
supposition (the hypothesis) 
we verify the validity of. 
Namely, I make a 
supposition (the hypothesis), 
then I verify if it is true; if it 
is like that, such hypothesis 
becomes the thesis. 
For example: we suppose 
that the set of the natural 
number is lower bounded 
(this is the hypothesis, the 
supposition), then we prove 
that it is true, therefore the 
hypothesis being true, 
becomes the thesis. 
Hypothesis and thesis are the 
same statement with two 
different value of truth: till 
when the statement is not 
proved to be true, it is a 
hypothesis, after its proof of 
true value it becomes a 
thesis. 

Because I suppose a fact and then I 
prove that it is true 

1 

Because you suppose a hypothesis to 
be true, and through a set of 
statements, you reach a thesis 

 
1 

Because first I suppose some data and 
I try to verify if my hypotheses are 
valid or not, if they are not valid I 
build new hypotheses. Sometimes, 
anyway, it can happen to discover 
some formulas or rules, then you try 
to reach their hypotheses 

 
 
1 

In this specific case there is a 
clear example of hypothesis 
meant as a supposition that 
has to be proved in order to 
become the thesis.  
 
What I observed in these last 
answers is that students think 
of hypothesis just as a 
conjecture to be proved; on 
the contrary hypotheses 
meant as a set of rules, 
axioms etc…already true, are 
not considered as hypotheses 
but just a set of statements

First I have to develop a hypothesis 
considering all the elements that have 
been given 

 
2 
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but just a set of statements.  First of all you need to have in your 
mind what you want to prove; in case, 
after the proof you make adequate 
changes 

 
1 

   
The thesis as an input to find 
new things. 

Because the thesis has to be an input 
to look for new properties, new 
relationships that are based on given 
elements (the hypotheses) 

 
1 

   
The hypothesis comes first 
just because its role is to 
simplify the proof. 

Usually the hypothesis simplifies the 
statement and the proof of the 
statement, and I believe it is more 
logical to start from easy and more 
understandable things to arrive to 
analyze more complicate ones 

 
 
3 

  45 
 
COMMENTS 
32/89 answered It depends, 12/89 answered The thesis comes always before the 

hypothesis, 45/89 answered The hypothesis comes always before the thesis. 

Concerning the first choice (it depends) we could summarize the main justifications 

as follow: very often the thesis is considered as a starting point from which it is possible 

to build the hypotheses that may prove the validity of the thesis itself; not only but the 

thesis seems to own an empirical connotation in contraposition with a more cognitive 

connotation of the hypothesis; namely, the thesis comes from an observed fact, while 

hypothesis is the construction of a reasoning.  

Very interesting is the answer given by a student who reveal the awareness of the 

difference between the construction of a proof and its “formalization”. Moreover, part of 

the students relate the characteristics of a proof with the cultural background.  

Among the 32 students (36%) who answer “It depends”, almost half of them (15/32) 

seems to base their response “the thesis comes before the hypothesis” on a common idea: 

the experimental characteristic of the reality; that means: in the real world what is 

observed is a fact (the thesis) that may be unusual or at least not directly explainable, 

therefore we look for or we try to build some hypothesis which may justify, or validate 
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the observation that has been made. Such students seem to describe the process Peirce 

talks about regarding abduction. Below the most significant answers given by the 

students to this regard are listed. 

 

9 Many times you start from the thesis and then you build the hypothesis useful to 

prove the validity of the thesis itself 

9 I think that there is a difference between the moment you state a theorem (usually 

the hypotheses are listed in an orderly way, then the thesis go after) and the 

construction of the statement of a theorem. This one follows a very laborious and 

“untidy” process; to this extent, sometimes you may have in your mind a result 

and you need to look for hypotheses from which you obtain the result; other times 

you start from certain hypotheses and you try to understand what they lead to. 

Besides, in the famous “if and only if” hypotheses and theses exchange the role. 

9 Many times you know where you want to arrive, but you don’t know where to start 

from. 

9 Sometimes it happens that you have an intuition on a thesis and subsequently you 

build the hypotheses that make the thesis true. 

9 Sometimes the thesis is already known and the proof is used only to explain the 

why of the validity of the thesis. 

9 It depends, because often a theorem rises from empirical experience, and 

therefore the thesis comes before the hypothesis. 

9 It depends if you infer the thesis from a group of hypothesis (a trivial and not very 

useful case) or if you need a thesis, or if you want to verify it, and you look for the 

hypotheses which you infer the thesis from (much more common case). 

 

On the other hand, the same students who answered “It depends” and gave the 

explanations listed above, stated that other times “hypothesis comes before thesis”; my 

feeling on this second kind of response is that has been leaded by the scholarization of 

their vision of proof. Namely, when students enter into school they usually start to 

approach ready made proofs, well stated, organized as a sequence of logical steps linked 
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one to the other one by deductive processes. All the intuitive, conjecturing phase has been 

already deleted, and forgotten. Below are reproduced some of the most significant 

excerpts : 

9 […] But it is also true that other times a theorem is the result of a reasoning that 

starts from very precise hypotheses to reach the theses which can be surprising 

and unexpected. 

9 […] Other times starting from the hypothesis you reach the proof of the theorem 

that was previously unknown. 

9 […] Sometimes from the hypothesis you deduce the thesis arriving at the concept. 

 

Furthermore, I got the impression that students when try to explain why thesis comes 

before hypothesis they seem really embedded in the reasons they give, otherwise it seems 

to me that when they try to justify why sometimes the hypothesis comes before thesis 

they just try to reproduce a frame they have seen at school  

The second choice is given by “the thesis comes always before the hypothesis”. 

Again, the general idea supporting this answer is that the thesis is the fact, the problem to 

be solved, the starting point, and the hypothesis is the tool to explain, to validate the 

observed fact. A new idea seems to come out from students’ justifications, it is the 

sequence between the hypothesis and the thesis. Namely, the existence of a hypothesis is 

subordinate to the presence of a thesis as some students wrote: 

9 First I decide what has to be proved 

9 Anybody, before of choosing to use particular tools and conditions (hypotheses) 

to prove his/her own conviction, has to have first a conviction that his/her own 

genius judges to be correct 

9 The hypotheses of a proof are built afterwards, because they put some “limits” 

(they are “characteristics”) for the statement of the theorem. 

 

The last choice was represented by: “the hypothesis comes always before the thesis”. 

In this case hypothesis, for example, is considered like what you already know and thesis 

is the unknown, therefore we start from what we know to prove the thesis. 
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Another interpretation is given by “the hypothesis is the place where the data 

necessary for the proof lay”; other times the relationship between hypothesis and thesis 

seems to be the same of the logical sequence “first doubt and then certainty”. To this 

extent the hypothesis represents the doubt and the thesis is the certainty. 

The majority of the students seem to be influenced by the structure (and not by the 

creation) of a proof as it is usually presented at school; therefore, proof is just a sequence 

of steps, that start from hypotheses to end into a thesis. Such a rigid structure is so 

predominant the student doesn’t realize that he assumes the presence of a thesis before 

the statement of the hypotheses (“the supposed thesis”). Nevertheless, a presence of a 

thesis before the hypotheses seems not to be part of the process of proving. 

Furthermore, hypotheses seem to live of their own life; the thesis rises as a 

consequence of the reasoning made about the hypotheses. But why such hypotheses are 

made or taken on consideration we don’t know… 

The hypothesis is a necessary tool to make a proof, specially because it is the base to 

reason about in order to check the validity or falseness of the thesis. 

The last interpretation of hypothesis I am going to take on consideration is the most 

interesting. Several students identify hypothesis only with supposition, conjecture, and 

look at the thesis as a hypothesis whose true value has been proved; namely, a thesis is a 

previous hypothesis (conjecture) that has been proved to be true. Therefore, hypothesis 

and thesis are the same statement with two different value of truth: till when the 

statement is not proved to be true, it is a hypothesis, after its proof of true value it 

becomes a thesis. On the contrary hypotheses meant as a set of rules, axioms 

etc…already true, are not considered as hypotheses but just a set of statements. 

Below the most significant excerpts has been taken on consideration to underline the 

explanations given by the students. 

 

9 From known things you prove unknown things 

9 Without hypotheses you can’t arrive at any thesis 

9 The hypothesis gives the basis in order to prove the thesis and for its proof, 

therefore it is essential 
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9 From the hypothesis or hypotheses applying mental-logical steps or theorems 

already known and proved, or axioms, you arrive always at the thesis no matter 

complicated the theorem is. 

9 Because first you state some hypotheses and then you try to reach the supposed 

thesis 

9 Because you always make a hypothesis first and then after several proofs you may 

give a thesis 

9 First I state the hypothesis and from that I reason to state my thesis 

9 Because I suppose a fact and then I prove that it is true 

9 Because you suppose a hypothesis to be true, and through a set of statements, you 

reach a thesis 

 

 

4th question    FOR EACH THEOREM DO YOU THINK THAT THERE EXISTS ONLY ONE 
CORRECT PROOF? 

  First year of 
college 
(out of 89) 

TYPE OF JUSTIFICATION STUDENTS’ TRANSCRIPTS N. OF 
STUDENTS 

Yes. Why?   
Because I imagine it 1  
Not to create confusion in a proof 1 

  2 
   
No. Why?   
   

It depends on the theorems, some may 
have more than one 

9 

I know some theorems that have two 
proofs 

3 

It depends on the theorems you are 
analyzing 

1 
 

 
 
 
It depends on the theorems. 
Probably such an answer 
depends on student’s 
scholastic experience 
 
 
 

I know theorems with more than one 
proof, for example the Pythagorean 
theorem. 

1 
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Many times during high school I saw 
theorems proved in different ways but 
all correct 

1  

In my opinion there exist more than 
one correct proof. You may think of 
“proof by contradiction” that are 
another way than a “linear” proof 

 
1 

   
There are different ways of reasoning, 
and also different sets of axioms, for 
example the one of Euclid for algebra 
and geometry 

 
6 

There exist different ways to reach 
the same result 

20 
 

It depends on the ways you want to use 
to reach the proof; many times there 
are several ways and you always try to 
choose the most convenient  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 
 

  

 
 
 
Different kinds of reasoning 
and different tools (e.g., 
axioms, postulates and so on) 
lead to different correct proofs. 
And also different paths you 
may choose to reach the same 
target. 
 
Furthermore, we can find a 
sort of “economy” of the 
thought; we generally choose  
Different kinds of reasoning 
and different tools (e.g., 
axioms, postulates and so on) 
lead to different correct proofs. 
And also different paths you 
may choose to reach the same 
target. 
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Proof is strictly dependent on the kind 
of reasoning you made 

1 

Because many times it is possible to 
take different ways to prove 
something. All depends on the 
knowledge a person has and also on the 
ways he/she has been taught to reason. 

 
1 

There may be more than one correct 
proof; some may be very artificial for 
it is difficult to find them 

 
1 

I think there are theorems which have 
more than one correct proof, because 
these proofs can be built using 
different mathematical tools, 
sometimes more sophisticated, 
sometimes less, but also because they 
are situated in different mathematical 
contexts. (You may find a theorem 
both in analysis and in geometry for 
example). This is the reason why the 
same theorem may have a two lines 
proof and another may have a two 
pages proof. 

 
 
 
 
1 

 
 
Furthermore, we can find a 
sort of “economy” of the 
thought; we generally choose 
the easiest, or most convenient 
procedure. 
 
Finally, the dependence of the 
kind of procedure on the 
knowledge and the cultural 
background of the person who 
performs the proof 
 
The different levels of 
knowledge lead to different 
levels of proof for the same 
theorem. 
 
 
 
 
 
 
 
 
 
 
 

It depends on your knowledge 
background, a competent person may 
proof a theorem in a complicate way, 
for example with more advanced 
knowledge, but sometimes you may 
prove a theorem with easier tools, and 
then, in my opinion, a person’s 
creativity has a big influence on the 
way you make a proof  

 
 
1 
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I think there may be more than one 
proof for a theorem, the difference is 
in the fact that some may result easier 
respect with some others 

 
2 

Because many times it is possible to 
take different ways to prove 
something. All depends on the 
knowledge a person has and also on the 
ways he/she has been taught to reason. 

 
 
1 

There may be more than one correct 
proof; some may be very artificial for 
it is difficult to find them 

 
1 

 

I think there are theorems which have 
more than one correct proof, because 
these proofs can be built using 
different mathematical tools, 
sometimes more sophisticated, 
sometimes less, but also because they 
are situated in different mathematical 
contexts. (You may find a theorem 
both in analysis and in geometry for 
example). This is the reason why the 
same theorem may have a two lines 
proof and another may have a two 
pages proof.  

 
 
 
 
 
1 
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It depends on your knowledge 
background, a competent person may 
proof a theorem in a complicate way, 
for example with more advanced 
knowledge, but sometimes you may 
prove a theorem with easier tools, and 
then, in my opinion, a person’s 
creativity has a big influence on the 
way you make a proof  

 
 
 
1 

I think there may be more than one 
proof for a theorem, the difference is 
in the fact that some may result easier 
respect with some others 
 
 

 
2 

 
You may use several methods to make a 
proof; you may start from different 
points of views and reach the same 
thing. This depends on the knowledge 
and on the tools you have, and 
furthermore it depends also on what 
view point you want to prove (e.g., 
mathematical, physics) 
 

 
 
 
1 

Because it is possible to reach the 
same conclusion making different 
reasoning 

 
2 
 

Different people may find different 
ways to reach the proof of a 
hypothesis 

 
5 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Because in the Sciences there are 
different kinds of reasoning, namely, 
different schools of thought. For 
example, the issue about the “zero” 
regarding its position in the real 
numbers or in the natural numbers  

 
1 
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In my opinion it is possible to reach a 
proof following different ways, 
sometimes there doesn’t exist a 
correct proof but there may exist 
several correct proofs  

 
1 

You may try different ways using your 
own knowledge 

 
1 

Through the reasoning you may find 
different ways to reach the proof of a 
theorem. 

 
 
1 

 
A proof may follow different paths 
depending on the kind of study and 
level of knowledge, but also on the 
inspiration of the person who is 
performing the proof. For example 
many mathematicians have tried to find 
different and unusual proofs for the 
Pythagoras’s theorem.  

 
 
1 

Because there always exist several 
procedures, and formulas to be applied 
to reach the statement. No doubts, we 
can distinguish between easier proofs 
and more tedious one. 

 
 
1 

The theorem is a unique thing but the 
ways you may explain it are different. 

 
2 

Sometimes you may prove a theorem 
both analytically and graphically 

 
1 
 

There are several mathematical tools 
that allow to proof the same thing in 
several ways 

 
1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

There may be several correct proofs 
for each theorem because: 1) you may 
use different tools (theorems, 
postulates, and so on) 2) each person 
proceeds in a proof as he or she thinks 
the better way is. 

 
 
1 
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In my opinion some theorems (I am not 
sure all of them) may be proved in 
different ways. For example I have 
tried (I hope successfully) to prove 
that among all the triangle with the 
same perimeter, the one with maximum 
area is the equilateral triangle, without 
using derivatives, limits (therefore, 
the study of a function), but with a 
“logic” reasoning on Erone’s theorem 

 
 
 
1 

The ways to prove something may be 
many, the fact is that usually you use 
the more intuitive and immediate one 

 
1 

Some theorems may be proved with 
different methods 

 
1 

 
 
 
 
 
 

Even through different “paths” logic-
deductive, it is possible to prove the 
validity of a theorem, the important 
thing is those paths to be correct and 
real 
 
 

 
 
1 

   
Probably the student is aware 
there exist more than one 
correct proof of the same 
theorem; but at school he/she 
usually sees only one of them. 
The sentence “only one is 
taught” underlines the idea 
that generally students’ 
experience with the approach 
to proofs is something passive, 
it is something that is taught as 
it is, just as final ready-made 
product, and not something 
that is built with students’ 
collaboration.  
 
 
 

I think there exist several ways to 
proof a theorem; but usually only one is 
taught  

 
 
 
1 
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Several ways I think to say “only one” is very 
restrictive. Euclidean Mathematics is 
based on five theorems…therefore a 
concept may be proved following 
several ways 

 
1 

   
It depends on the individual 
creativity and initiative. 

Because mathematics is a very wide 
subject matter and depending on the 
person who is proving the theorem 
there exist different ways to reach 
the thesis starting from the same 
hypothesis, it depends also on the 
person’s creativity and initiative. 
 
 

 
 
 
1 

   
Only two things are constant: 
the logic and the truthfulness 
of the statements. What 
remains depends on the 
individual’s creativity and 
initiative, the important fact is 
that such characteristics be 
supported by a basic cultural 
background. 

I think that the only constant of a 
proof is the logic and the truthfulness 
of the statements. Therefore, I think 
there doesn’t exist a fixed scheme and 
that creativity and initiative are the 
basis of a brilliant intellect on 
condition that it is supported by a 
certain “cultural background” that 
allows to reach correct conclusions. 
 
 

 
 
 
1 

   
The only important thing is 
that has to be logically correct.

The only important thing is that the 
proof must be logically correct 

 
1 

   
More than one correct proof There may be more than one correct 

proof 
 
3 

   
From different hypotheses for 
the same theorem, you will 
obtain different correct proofs 

You may pose different hypotheses to 
reach the same thesis 

 
1 

  89 
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COMMENTS 
 Almost the totality of the students agrees with the fact that there may exist more 

than one correct proof for the same theorem. 

Different are the justifications given by the students. Some of them seem to be influenced 

by their scholastic experience, in the sense that they legitimate the existence of more than 

one correct proof, because they saw it at school (a sort of authoritarian scheme). 

 Others start from the idea that existing different ways of reasoning and different 

tools (axioms, postulates, and so on), there must exist different ways to make a proof for 

the same statement  

Furthermore, a proving process depends on our own knowledge, for this reason such a 

procedure may take different aspects, not only but also, different levels of knowledge 

lead to different levels of proof. Interesting is the fact that students seem to be aware of 

the existence of several correct proofs for the same theorem, but they meet just one of 

them during their scholastic career. 

 The sentence “only one is taught” underlines the passive character of the students’ 

learning process; usually proofs are presented to students as a ready-made product, 

instead to be involved actively in the construction of it. 

Some of the most indicative excerpts are listed below: 

9 Many times during high school I saw theorems proved in different ways but all 

correct 

9 Proof is strictly dependent on the kind of reasoning you made. 

9 Because many times it is possible to take different ways to prove something. All 

depends on the knowledge a person has and also on the ways he/she has been 

taught to reason. 

9 I think there are theorems which have more than one correct proof, because these 

proofs can be built using different mathematical tools, sometimes more 

sophisticated, sometimes less, but also because they are situated in different 

mathematical contexts. (You may find a theorem both in analysis and in geometry 
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for example). This is the reason why the same theorem may have a two lines proof 

and another may have a two pages proof. 

9 It depends on your knowledge background, a competent person may proof a 

theorem in a complicate way, for example with more advanced knowledge, but 

sometimes you may prove a theorem with easier tools […] 

9 You may use several methods to make a proof; you may start from different points 

of views and reach the same thing. This depends on the knowledge and on the 

tools you have, and furthermore it depends also on what view point you want to 

prove (e.g., mathematical, physics) 

9 In my opinion it is possible to reach a proof following different ways, sometimes 

there doesn’t exist a correct proof but there may exist several correct proofs 

9 A proof may follow different paths depending on the kind of study and level of 

knowledge […] 

9 I think there exist several ways to proof a theorem; but usually only one is taught. 

 

5th question  THE CONSTRUCTION OF A PROOF HAS TO FOLLOW A FIXED PATTERN. 
CREATIVITY CANNOT FIND ROOM IN THE CONSTRUCTION OF PROOFS. 

  1st  year of 
college 
(out of 89) 

TYPE OF JUSTIFICATION STUDENTS’ TRANSCRIPTS N. OF 
STUDENTS 

False. Why?   
The only constant factor is 
the logic and the 
truthfulness of the 
statement. 
All remaining depends on 
creativity and personal 
initiative that are a smart 
mind’s characteristics. The 
important thing is that 
creativity be supported by a 

I think the only constant of a proof is its 
logic and the truthfulness of the 
statements. Therefore I think there 
cannot exist a fixed scheme and that 
creativity and initiative are at the basis 
of a brilliant intellect a on condition that 
they are supported by a certain “cultural 
background” that allows to reach correct 
conclusions 

 
1 
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Because, if you mean creativity in the 
sense of freedom to start from where 
you want, I think it is possible to do it, 
what it is important is to be able to prove 
what you want. Probably, the limitations 
are not much in the structure of the 
proof but in the concepts you may use. A 
rigorous proof uses abstract concepts 
because stillness, invariability in time of 
the proof must be guaranteed  

 
1 

Creativity in mathematics is the most 
difficult thing, but also the most 
beautiful (if correct). It may simplify 
steps that are only mechanics therefore 
boring. What is fundamental, anyway, is 
the fact that mathematical rules have to 
be respected.  

 
1 

A proof doesn’t have to follow a fixed 
scheme, but the tools you use must have 
sense and must lead anyway to the right 
proof of a theorem 

 
1 

creativity be supported by a 
cultural background. 
Therefore, creativity and 
personal initiative are 
acceptable only if based on 
legitimate knowledge. 
 
Creativity meant as freedom 
for the choice of the points 
of view to be adopted. 
Again, the limitations are 
not on the structure of the 
proof but on the concepts 
used for the proof; such 
concepts have to respect the 
rigor and the validity of 
mathematics. 
 
Creativity as a very difficult 
but at the same time 
amazing thing, if it is 
correct.  
Creativity as a tool to 
simplify steps otherwise 
complicated and boring. 
Again the common idea 
underlying all these answers 
is  the respect for the rigor 
of mathematics. 
 
Finally, the common 
denominator in this first 
group of answers is that 
creativity and personal 
initiative are important, are 
accepted, and useful, but at 
the base nothing would be 
acceptable if there weren’t 
the rigor that characterizes 
mathematics  

Most of the proofs are based on past 
experience, but also fantasy and 
creativity may give a useful help, always 
following mathematical rules. Indeed, you 
may find very few identical proofs  

 
 
1 
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A proof may follow different paths 
according with the kind of studies and 
the level of cultural background, but also 
following the personal inclination of whom 
that is making the proof.   

 
1 

There may be more than one proof for 
each theorem, as I already said 

 
1 

There isn’t only one way to face a proof  
1 

You can try several paths using your own 
knowledge 

 
1 

Mathematics is a very wide subject 
matter, and depending on the person who 
wants to prove the theorem there exist 
several ways to reach the thesis starting 
from the same hypothesis, it also 
depends on person’s creativity and 
initiative 

 
1 

As I said for the previous question, a 
proof of a theorem may be not unique and 
anyway also inside of the same proof is 
possible to make variations, leaving room 
for creativity and personal initiative. We 
have to say, that it is true that not many 
students have this kind of skill 

 
1 

There are many ways to prove a theorem. 
Therefore personal initiative and 
creativity are at the basis of a proof  

 
5 

Sometimes, there exist many 
mathematical tools to prove something, so 
you may chose the one you prefer 

 
1 

Because each of us may find more logic 
one step instead of another one 

 
1 

Each of us look at the problem from a 
personal point of view and he/she may 
solve it in the way he/she believes to be 
more convenient 

 
1 

There are more than one 
way to make a correct 
proof; therefore, among 
these different approaches 
creativity may be a 
possibility. 
 
It is possible to reach the 
same target in several ways; 
this depends on personal 
creativity and initiative. 
 
The two previous 
interpretations are different: 
the former states that there 
are several ways of 
approach to a proof, 
therefore one of these 
approaches is creativity and 
personal initiative. The 
latter says that creativity and 
personal initiative are the 
cause of the heterogeneity 
of the approaches. 
 
Each of us has different 
ways of thinking, therefore 
creativity and personal 
initiative must play their 
role. 
 

The proof depends on whom who is making 
it 

 
1 
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 Each of us has a different form of 
reasoning 

 
1 

   
It also depends on the personal 
inclination, with it I mean the intuitions 
too, and the ones of great thinkers have 
enhanced the overcoming of some 
limitations f Analysis. 

 
1 

The construction of a proof must without 
doubt follow a linear reasoning, but this 
doesn’t exclude creativity and personal 
initiative. It there were not personal 
initiative I think no science could make 
progresses. 

 
1 

Even the history teaches us: “a spot of 
genius” may lead to a proof that is totally 
out of traditional schemes adopted to 
build a proof. 

 
1 

Intuitions seem to be the 
ones that lead to progress of 
the science and the 
enhancement of the 
knowledge. 
 
The reasoning used for a 
proof must be linear, but 
linearity doesn’t exclude 
creativity and personal 
initiative. Furthermore, 
intuitions and creativity are 
fundamental elements for 
the progress of the science 
 
Probably students think of 
what they have studied at 
school, great philosophers, 
or mathematicians etc.  

Creativity is the characteristic that 
stimulates human beings to the 
continuous research, that leads to 
knowledge 
 
 
 

 
1 

   
Fantasy arrives before the 
reality 

The fantasy arrives before the reality  
1 

   
Many times without intuition, creativity, 
and personal initiative you cannot find an 
efficient proof. 

 
3 

You might need the intuition to build a 
theorem 

 
1 

Fundamental tools 
 
Intuition may be a tool 
useful for the construction 
of a theorem.  
 
Sometimes intuition and 
creativity may be the only 
tools to find a proof  

Sometimes you can find a proof only 
thanks to intuition and creativity, in this 
case the proof looks more amusing 

 
1 

   



 209

Many proofs are very fanciful, we can say 
absurd. 

 
1 

Several proofs are fanciful 
we could almost say, 
absurd.  
Probably, students think of 
proof they have seen at 
school, such as Lagrange 
theorem, or Taylor theorem, 
the proof of the first 
derivative of the product, 
where some artifices are 
used. They often cannot see 
the relationship between the 
artifice and what is being 
proved; and they obviously 
ask: “Where is this come 
from?” 
 
Therefore students cultivate 
such an idea that to make 
proof you need fantasy, for 
this reason creativity is one 
of its components.  
 
 
 
 
 
 
 

For some proofs you need a lot of fantasy  
1 

   
 
Creativity, personal 
initiative, and intuition as 
fundamental tools for the 
construction of a proof. 
They represent tools 
necessary to reason, to 
inquiry, to look at the 
problems from different 
points of view. Furthermore, 

I think that creativity and personal 
initiative are the most important tools in 
the construction of a proof, because they 
help to think of and to wonder about 
problems of different kind (even though 
later on some of them may result not 
useful) and creativity and personal 
initiative develop a capacity’ of personal 
critical analysis  

 
1 
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Initiative and personality are part 
integrating in the construction of a logic 
process that would remain stuck in 
prescribed rules if it weren’t adapted to 
an “esprit de finesse” 

 
1 

Along with creativity and personal 
initiative I would add intuition, because 
without it, when you meet an obstacle, 
during the construction of a proof you 
wouldn’t know what to do anymore; 
instead, a creative and intuitive person 
might find a solution 

 
1 

Creativity and personal initiative may lead 
to the discovery of alternative proofs 
sometimes correct, sometimes not. 
Anyway, such proofs may be useful to 
shed light on some properties not yet 
found  

 
1 

Many times creativity and personal 
initiative are the ones that lead to the 
birth of a new proof that may be easier 
or more complicate than the previous one 

 
1 

It is exactly creativity that makes us to 
think at 360 degrees, and to explore 
several ways and methods for a proof 

 
1 

If it were like that the several sciences 
wouldn’t have been evolved. There may 
exist several ways to prove a thing 
therefore it is not useful to “fossilize” on 
only one procedure. Furthermore, to go 
through new paths might lead to the 
discovery of new theorems or anyway to a 
greater consideration on points previously 
little considered  

 
1 

Sometimes creativity helps to solve 
problems, also in Analysis 

 
1 

points of view. Furthermore, 
creativity and personal 
initiative enhance the sense 
of critique 
Without creativity, we 
would remain stuck in 
prescribed rules; such rules 
may represent an obstacle to 
look beyond.  
 
They are also considered 
tools employed to shed light 
on properties still unknown. 
 
Creativity necessary to build 
new proofs, easier than the 
ones already existing. 
 
Creativity as tool employed 
to think at 360 degrees; it is 
an instrument to explore 
new ideas, to find a more 
efficient proof. 
Students think that books 
for example often are not 
the easiest ones, or the most 
efficient; therefore creativity 
may enhance such kind of 
things. 
 
As tool to simplify more 
complicated processes. 
 
Creativity is the base for the 
greatest discoveries 
 
To follow fixed schemes is 
not enough. 
 
The “eyes of the mind” may 
not be able to see a solution 
that is right in front of them. 

You need to find the most efficient 
scheme in any way but it is correct 

 
1 
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Because personal initiative may allow to 
reach the same conclusion from different 
start points. Not always the proof you 
find in the books is the easiest. The 
single with his/her creativity may build a 
path to follow that is easier 

 
1 

Many times personal initiative and 
creations help to solve a proof in a 
correct way 

 
1 

Often creativity and initiative may 
shorten proving processes very difficult 

 
1 

Many times with smartness you may find 
faster methods that simplify proofs 

 
1 

Mathematics is indeed one of the 
sciences where human genius is very 
important. Some very difficult proofs 
were born thanks of amazing intuition. 

 
1 

It is thanks of famous mathematicians’ 
creativity that many theorems have been 
discovered. Following fixed schemes 
cannot be enough, because sometimes you 
have the solution in front of your eyes 
but you cannot see it with the eyes of the 
mind 

 
2 

You cannot follow a fixed scheme, due to 
the fact that the hypotheses are always 
different. If creativity and personal 
initiative couldn’t find a place in the 
construction of a proof, there wouldn’t be 
any progress (i.e.: new proofs of the 
validity of statements) 

 
1 

Very often intuition has played in the 
history of the human development a 
fundamental role 

 
1 

 
Hypotheses vary from 
theorem to theorem; 
therefore it is not possible to 
apply the same method. 
 
Without creativity there 
wouldn’t be progress. 
Creativity as another 
possible “reading key”  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Because personal intuitions may be a 
reading key different from prefixed 
schemes 

 
1 

   
There is no mathematical 
science without creativity 

There doesn’t exist mathematical science 
without creativity and personal initiative 

 
1 
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Otherwise any machine could do any 
proof. Intuition is fundamental 

 
1 

They are two fundamental 
characteristics to prove a theorem 

 
4 

Theorems and axioms must be “fixed”, 
but often it is intuition deriving from 
personal initiative that leads to the 
construction of a correct proof  

 
1 

Because without creativity and personal 
intuition you could never reach a complete 
construction of a proof 

 
1 

Very often intuition and some intelligent 
tricks are needed  

 
1 

and personal initiative. 
 
On the contrary any 
machine could make any 
proof, that is not true, 
therefore intuition that is a 
human being characteristic 
is fundamental. 
 
Theorems and axioms may 
be fixed, but what leads to 
the construction of a proof 
is the intuition. 
 
A proof is not something 
fixed (in the sense unique) 
at all therefore, creativity 
and intuition are basilar 
tools that help the 
construction of a proof.  

I believe that intuition and personal 
creativity may help in a decisive way the 
construction of a proof that is not 
absolutely a “fixed” thing 

 
5 

   
Rationality and logic non 
always have fixed schemes. 

Not always do logic and rationality have a 
fixed scheme 

 
1 

Creativity as part of the 
process for the formulation 
of a hypothesis 

Creativity is part of the formulation of an 
hypothesis 

 
1 

The problem to leave the 
rationality that represents 
something certain, to 
approach creativity and 
personal initiative that 
represent uncertainty. 

I always heard my teachers saying that 
personal initiative and creativity are 
important, I agree but my extremely 
rational personality prefers always and 
anyway a fixed schema 

 
1 

For new things we need new 
ideas, new methods, 
something not seen before, 
even though what we 
already know has its 
importance. 

If I have to prove a thing I have never 
proved before, it is more than logical to 
use methods never used before, not 
forgetting the ones previously used 

 
1 

Several star points for the 
construction of a proof, 
therefore creativity and 
personal initiative are 
necessary. 

Many times to build a proof you may start 
from different points (I believe) and in 
my opinion even if there might be a fixed 
scheme, creativity and personal initiative 
are always important. 

 
1 
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Proofs as product of 
creativity and personal 
initiative.   

Many proofs are the product of 
creativity and personal initiative 

 
4 

No universal scheme 
because any problem is 
different from the other  

Being any problem different from the 
others, it would be wrong to think to 
solve it adopting procedures that follow a 
universal scheme  

 
1 

   
Creativity and personal 
initiative as tools to 
communicate and to make 
oneself understand  

Because it is necessary, in order to make 
others understand, to use any kind of 
known tool, therefore creativity and 
initiative are at the basis of that. 

 
1 

   
The idea you may start from 
an intuition to prove the 
“algebraic” validity of an 
idea. 

You may start from a more intuitive idea 
to proof algebraically the validity. 

 
1 

 
 
 
 
 
 
 
 

  
80 

   
True. Why?   
Mathematics as an applied 
science, therefore creativity 
and personal initiative 
cannot be employed 

Unfortunately mathematics, in my opinion, 
cannot be invented, but it is applied. 
Therefore, apart from intuition (that 
anyway takes me to apply a 
preestablished procedure), I think that 
fantasy, and creativity, are not involved 
in mathematics. 

 
1 

Mathematics as a universal 
science that must use 
universal tools, 
understandable by 
everybody. Creativity and 
personal initiative cannot be 
used because are subjective. 

Because they are tools of mathematics 
and they must follow a standard 
procedure in order to be universal and of 
easy use  

 
1 
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Creativity and personal 
initiative cannot give any 
contribution to a proof 

Personally, I don’t see how creativity and 
initiative may give a contribution to the 
proof of a theorem or of a statement 

 
1 

Creativity and personal 
initiative may be employed 
only if based on scientific 
base  

You may give space to intuition and 
creativity, but always on scientific bases 

 
1 

Even there may be several ways to prove 
you cannot change the rules 

1 There are fixed rules that 
cannot be changed. 

There are some rules that has to be 
followed  

1 

Creativity is part of the 
formulation of a hypothesis; 
therefore, it cannot take part 
of the proving process. 

I believe that creativity is part of the 
formulation of an hypothesis 

1 

There are no inventions; a 
proof is based on concrete 
things. 

You don’t have to invent things, but they 
must be proved based on concrete 
principles 

1 

Mathematics is a whole of 
fixed rules and schemes that 
must be followed with rigor. 

A proof is a mathematical procedure that 
doesn’t leave space to conjectures or 
creativity in the sense that any employed 
procedure must follow laws that are in a 
certain way and that cannot be in any 
other way. All you use for a proof is 
regulated by mathematical laws  

 
1 

  9 
 
COMMENTS 
 
 80 students out of 89 claims that creativity and personal initiative are fundamental 

parts of a proving process. Many different justifications have been given to explain such 

a choice. For example, creativity and personal initiative are fundamental but are 

acceptable only when they respect a sort of rigor, peculiar characteristic of mathematics 

science; furthermore, creativity can be taken on consideration when is based on a cultural 

background and on recognized knowledge. Always in this case they underline that the 

limitations about the rigor are not related to the proof’s structure but to the concept to be 

used. 
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 For other students creativity and personal initiative are considered as a smart 

mind’s characteristic. Furthermore, the aforementioned skills have to be considered 

possible tools of a proving process, because there is no only one way to approach a proof, 

namely among the different ways to tackle a proof there is intuition and creativity. 

 Nevertheless, there are two different explanations about this issue; some students 

justify the use of creativity and intuition arguing that they are just one of the several 

methods which can be used; others state that there may exist several ways to approach a 

proof because of creativity and intuition. 

 Students consider that many times proofs are very difficult; creativity and 

intuition may help to approach such a process in a easier way, not only but they enhance 

scientific progress and new knowledge. A possible explanation might be that students 

recall their scholastic knowledge about great philosophers, mathematicians and tinkers of 

the history. 

 In other cases creativity and intuition may represent the only tools useful to build 

a proof; or an important tool that allows to look at the problem from different points of 

view; to reason at “360 degrees”, to look beyond what the “eyes of mind” may see. 

Prefixed rules may become a cognitive obstacle that may be overcome by intuition or 

personal creativity that also enhance the development of sense of critique. Therefore, 

creativity and intuition as an instrument of exploration, of construction of new 

knowledge, it is considered as a “reading key”. 

 Furthermore, creativity and intuition are necessary to enhance fantasy; for some 

students fantasy is an important component in the process of proving, because many 

proofs are very artificial, and in order to find such artifices you need a lot of fantasy. 

Probably students think of proofs like the one for Lagrange theorem, Taylor theorem, or 

the first derivative of the product and so on. 

 Finally, there are no fixed schemes; any problem is different to another one, for 

this reason we have to employ creativity and personal initiative. In addition no machine 

may build any kind of proof therefore creativity is needed. To conclude, creativity and 

personal initiative are the tools to communicate with the others, and to make one 

understand. 
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 The remaining students, exactly 9, argue that creativity and personal initiative 

cannot be part of a proving process. First of all because mathematics is an applied science 

and the previous two cannot be applied; mathematics is a universal science that must use 

universal tools, understandable by everybody, and creativity cannot be considered 

universal, on the contrary it is subjective. 

 Furthermore, in mathematics there are fixed rules that cannot be changed. For 

some students creativity is part of the formulation process of a hypothesis, therefore it 

cannot be part of a proving process. It seems that the formulation of a hypothesis and the 

process of proving be two disconnected things. 

 Finally, mathematics is seen as a whole of fixed rules and schemes that must be 

followed with rigor. 

Some student’s excerpts follow: 

 

9 Because, if you mean creativity in the sense of freedom to start from where you 

want, I think it is possible to do it, what it is important is to be able to prove what 

you want. Probably, the limitations are not much in the structure of the proof but 

in the concepts you may use. A rigorous proof uses abstract concepts because 

stillness, invariability in time of the proof must be guaranteed 

9 Creativity in mathematics is the most difficult thing, but also the most beautiful (if 

correct). It may simplify steps that are only mechanics therefore boring. What is 

fundamental, anyway, is the fact that mathematical rules have to be respected. 

9 There are many ways to prove a theorem. Therefore personal initiative and 

creativity are at the basis of a proof 

9 Even the history teaches us: “a spot of genius” may lead to a proof that is totally 

out of traditional schemes adopted to build a proof 

9 Many times without intuition, creativity, and personal initiative you cannot find 

an efficient proof 

9 I think that creativity and personal initiative are the most important tools in the 

construction of a proof, because they help to think of and to wonder about 

problems of different kind (even though later on some of them may result not 
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useful) and creativity and personal initiative develop a capacity’ of personal 

critical analysis 

9 Creativity and personal initiative may lead to the discovery of alternative proofs 

sometimes correct, sometimes not. Anyway, such proofs may be useful to shed 

light on some properties not yet found 

9 It is exactly creativity that makes us to think at 360 degrees, and to explore 

several ways and methods for a proof 

9 It is thanks of famous mathematicians’ creativity that many theorems have been 

discovered. Following fixed schemes cannot be enough, because sometimes you 

have the solution in front of your eyes but you cannot see it with the eyes of the 

mind. 

9 Theorems and axioms must be “fixed”, but often it is intuition deriving from 

personal initiative that leads to the construction of a correct proof 

9 Being any problem different from the others, it would be wrong to think to solve it 

adopting procedures that follow a universal scheme. 

9 There are some rules that has to be followed 

9 A proof is a mathematical procedure that doesn’t leave space to conjectures or 

creativity in the sense that any employed procedure must follow laws that are in a 

certain way and that cannot be in any other way. All you use for a proof is 

regulated by mathematical laws 

 

6th question             A PROOF IN CALCULUS HAS THE FOLLOWING ROLE 
 1st  year of 

college 
(out of 89) 

1    To convince somebody about the validity of a statement        

1 

2    To explain why a statement is valid       

19 

3    To establish the validity of a statement     

22 
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1 e 2      To convince somebody about the validity of a statement and To 
explain why a statement is valid 

 

7 

1 e 3    To convince somebody about the validity of a statement and To 
establish the validity of a statement    

 

2 

2 e 3      To explain why a statement is valid and To establish the validity of 
a statement   

 

26 

1 e 2 e 3      To convince somebody about the validity of a statement and To 
explain why a statement is valid and To establish the validity of a statement  

 

8 

1 +    To make hope that you didn’t waste your 
time for something without sense    

 

1 

1+2+3+    All these things, but only in a 
certain sense. For example, in the history of 
physics before the “revolution” brought by the 
relativity, all proofs were valid exactly “in 
function” of the conceptions (in this case 
“space” and “time”) of time, therefore you can 
say that they establish the validity of a 
statement until a change given by a new 
revolution 

 

 

1 

 
 
 

Something else (Specify) 
 
 

2+3+ something else 
 
Jacopo explains for each points he has chosen 
his point of view. He has chosen 
2. To explain why a statement is valid, and he 
writes: It is interesting the relationship 
between the several hypotheses and the related 
steps of the proof. 
 
3. To establish the validity of a statement, and 
he writes: It is important but only for whom 
who is dealing with mathematics at high levels. 
The statements given to us as students we know 
in advanced that are true 
 
Something else, and he writes: It is necessary 
to underline in which cases a theorem may be 
used, with particular attention to the control of 
all hypotheses. Very often you make the 
mistake to use a rule without verifying the 
hypotheses (I say it for personal experience) 

 

 

 

 

 

 

 

 

 

1 
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To convince somebody and themselves about the validity of a statement        

1 

  

89 

 

The predominant idea about the role of a proof is the following: it must explain and 

validate.  
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Appendix B: Transcripts of students’ protocols 

 
 
Alice and Roberta (fixed point problem) 
 

R1: RA: domain from [0,1] to [o,1] 

R2: R: fixed point on the bisector line and therefore… 

R3: A: (she draws the bisector line) therefore this is the (1,1) and (0,0).  

R4: R The fixed point must be between these two points …(and she signs the two points 

(0,0) and (1,1) going along the bisector line) 

R5: A: Exactly…but it could have only these two points [(0,0), (1,1)]; if it were in this 

way (and she signs a concave function over the bisector line) therefore there is a fixed 

point for sure, because there are these two points of the bisector line (and she signs (0,0) 

and (1,1)) 

R6: R: eh…no, because the function could start from here and from here 

R7: A: you are right, it is true; it is defined from 0 to 1… 

R8: R: oh yes...the function starts from 0 and then there is a point here for sure (she 

underlines the segment from 0 to 1 on x-axis) and it arrives at x=1, therefore there is also 

a point here for sure (she underlines the side of the square of vertexes (1,0) and (1,1))  

R9: A: oh right...then it has to intersect the bisector line for sure…suppose that it does 

like that… 

R10: R: hmmm…the function must have a fixed point for sure…because it has to pass 

from here to there 

R11: A: yes…it must go through for sure…then the point of abscissa x=0 could have y=0 

then it would have a fixed point or it could be >0 then it doesn’t have…and the point x=1 

could have y=1 and then it would have a fixed point or ≠1 then it would not have the 

fixed point. 

R12: R: then it would intersect in the middle…I mean in a point whatever (and both 

Alice and Roberta draw hypothetical functions)…I was thinking…only one…it could 

have more than one… 
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R13: A: yes probably yes…(Alice draws a kind of sinusoid) 

R14: R: but in a function for each x must correspond a y… 

R15: A: yes…this is always a function 

R16: R: ah…yes yes…exactly 

R17: A: therefore at least there is one point for sure 

R19: R: yes there must be for sure…because anyway one point here and one point here 

(she signs the extremes) …here I get confused because we have more than one… 

R20: A: you have more y… 

R21: R: yes exactly 

R22: A: I mean, given a y there are several x corresponding to it, but not that for an x 

several y correspond 

R23: R: yes exactly… 

R24: A: we would better write something 

R25: A/R: eh yes…there is one for sure 

They start writing… 

R26: R: then this function must have a point here and one there (they sign the two sides 

of the square) for sure 

R27: A/R: (they start organizing a proof going through the fundamental steps they 

touched in the construction of their conjectures) 

R28: A/R: then the function must start from 0 and have f(x) on this side and arrive at the 

point of abscissa x=1 and f(x) on this side then…there is the bisector line that goes 

through (0,0) and (1,1) 

R29: R/A: therefore we write… 

R30: A: I was thinking…there must exist a point of abscissa 0 

R31: R: exactly…and the y… 

R32: A: and the y… 

R33: R: the y between 0 and 1 

R34: A: (Alice writes) then P(0, 0≤ y ≤1) because the domain… 

R35: R: it is defined from 0 to 1 

R36: A: dom=[0,1] and cod=[0,1] 
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R37: R:and it must be the same for the point of abscissa 1 

R38: A: (Alice writes) it must exist too…P1 (1, 0≤ y ≤1), I would start with the limit 

cases, P(0,0) and P1 (1,1) or when (she goes with her finger from the point (0,0) along 

the segment 0-1 on the y-axes, and she does the same with the punt (1,1) downwards) 

R39: R: I understood what you mean 

R40: A: the cases where P and P1 are the fixed points (and she writes P(0,0) e P1(1,1)) 

R41: R: (she starts saying…signing possible functions on the graph) if it did like that 

(and she signs a concave increasing function) then there are two, if it did like that…there 

would be only one and in the other way there would be more than one, there here is one 

for sure. 

R42: A: Therefore this (P=(0,0) and P1(1,1)) is not the limit case because we have two 

fixed points 

R43: R: let’s explain why… 

R44: A: there could be fixed points every time that the function intersects the bisector 

line…but then there could be infinite fixed points. 

R45: R: well we can’t know this, but we know for sure that there is one fixed point (at 

least) 

R46: A: once we have proved that there is one we are done, we don’t have to prove that 

there is more than one fixed point. 

R47: R: now let’s do the cases where the function does not go through (0,0) and (1,1) but 

a point over here (and she signs the segment 0-1 on the y-axis) 

At this point they write on their protocol: 

If the function f(x) goes through P(0,0), a fixed point is P; There could exist other fixed 

points in the case that the function intersects the bisector line. 

In the same way, if the function goes through the point P(1,1). In all other cases the 

function will have to go through a point with abscissa 0 and a point of abscissa 1 (for 

hypothesis). In these cases the ordinate of the point with abscissa 0 will have to be 0 ≤ y 

≤ 1, and the ordinate of the point with abscissa 1 will have to be 0 ≤ y ≤ 1. Being the 

function continuous for any path satisfying the aforementioned conditions will have to 
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intersect the bisector line in at least one point (on the bisector line lie all the fixed 

points). 

R48: A: anyway…we could also prove it taking a square…a point running on a side and 

another point running on the opposite side…then we link the two points…you can do a 

non-linear path too, and you see that the function always intersects the bisector line 

 
Serena and Francesca (limit problem) 

 

R1: S: : h goes to zero…x0+h… 

They immediately draw the graph visualizing x0, x0 + h, f(x0), f(x0 + h)… 

R2: S: f(x0+h) 

She looks at it on the graph 

R3: S: when h → 0 this gets closer here and also f(x+h) 

R4: F: this difference is exactly… 

R5: S: it goes close to f(x0)… 

R6: F: exactly… 

R7: S: anyway, this difference goes to zero…and if we separate them?   
h

hxf
2

)( 0 +
… 

f(x0+h) → f(x0)… 

R8: F: 
h
xf

h
hxf )()( 00 −

+
 and then we add it… 

R9: S/F: let us write it down better: ⎟
⎠
⎞

⎜
⎝
⎛ −

−+⎟
⎠
⎞

⎜
⎝
⎛ −

+
→ h

hxf
h
xf

h
xf

h
hxf

h

)()(
2
1)()(

2
1lim 0000

0
 

R10: F: this (referring to the first parenthesis) is our f’(x0) therefore 
2
1 f’(x0) 

R11: S: that thing there (referring to the second parenthesis)… 

R12: F: it will be a difference quotient as well…because if you look at the drawing…from 

this you take off this and divide by h; from that you take off this and you subtract h, 

therefore the difference should be the same thing… 

R13: S: then…1/2 f’(x0) – 1/2  ⎟
⎠
⎞

⎜
⎝
⎛ −

−
→ h

hxf
h
xf

h

)()(
lim 00

0
this  goes to zero… 
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R14: F: hmmm… 

R15: S: in my opinion is wrong…ah…but wait…here there is –h therefore this becomes 

+…then f’(x0)… 

[…] 

R19: F: yes…also because basing on my intuit I would have said that the limit would go 

to f’(x0)….therefore ⎟
⎠
⎞

⎜
⎝
⎛ −

−
h

hxf
h
xf )()( 00  is the difference quotient 

Francesca repeats it to me 

R20: F: We did it very algebraically…and we said…first we add ⎟
⎠
⎞

⎜
⎝
⎛

h
xf )( 0  and then we 

subtract it…first we take out 1/2 …
( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛ −

−
+

h
hxf

h
hxf 00

2
1  I add and subtract 

h
xf )( 0  

therefore here taking it out, I have exactly the difference quotient, thus I have f’ (x0) 

here… 

R22: I: here can I say that it is f’(x0)? 

R23: F: 
( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛ −−

h
xfhxf 00  let us change the signs…

( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

−
−−

−
h

hxfxf 00

2
1  and we 

said… 

R24: S: that the difference quotient can be 
( ) ( )

⎟
⎠
⎞

⎜
⎝
⎛ −+

h
xfhxf 00  but also 

( ) ( )
⎟
⎠
⎞

⎜
⎝
⎛

−
−−

h
xfhxf 00  

R25: I: Why? 

R26: S: because h goes to zero therefore –h goes to zero and thus even this is f’(x0), then 

( ) ( ) ( )000 ''
2
1'

2
1 xfxfxf =+  
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Matteo and Marco (fixed point problem) 

 

R1: Matteo: this function is in the middle, I would say…I mean…it goes from here to 

there  

R2: Marco: from 0-1 to 0-1 

R3: Matteo: if the function starts from 0 and goes up and goes down, it takes all the 

values one time…and we have two fixed points. 

R4: Marco: The fixed points are these, then?  

R5: Matteo: the function must have fixed points, if we find such a function that doesn’t 

have fixed points, we have solved the problem; on the contrary, if we have to prove that it 

has a fixed point, then it is amore difficult. 

R6: Matteo: I suppose that if the problem asks, the function will have a fixed point. 

R7: Marco: How can we find this fixed point? 

R8: Marco: a fixed point is here, another one is here…  

R9: Marco: therefore, the fixed points are those that have y = x? 

R10: Matteo: I would say yes…I would say that the fixed points are on…y = x…and if 

our function must assume all the value of the image in such a way if it is continuous it 

must go through this line…there will be a point for sure… 

R11: Marco: we know that starts from x=0 and arrives at x=1, it has to arrive here. 

R12: Matteo: supposing that it does not have to intersect this thing, and given the fact 

that it must take all the values from 0 to 1, the value with x=0 must exist, if for this x=0 y 

were equal to 0 we would have a fixed point, therefore it does not work, then y must be 

different to 0 and at this point we would have one of these points here. When we want to 

go to x=1 or y=1 and we don’t want to, therefore y ≠ 1, then we have one of these points 

here and one of these points here to go from here to there in any way we have to go 

through here and therefore any function which brings one of these points here to a point 

there must intersect the bisector line, for sure… 

R13: Matteo: in my opinion we should think of a counterexample, somebody saying that 

it is possible to pass, I have to find the way to prove that we can’t pass without 

intersecting the line, at  
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R14: Matteo: io suppongo che in qualche modo la x = 0, y = a con a ≠ 0, poi abbiamo x 

= 1, y = b con b ≠ 1, prendo una f(x) qualsiasi..ok…abbiamo 3 casi: a > b questo è il 

punto a e questo è il punto b e c’era un teorema, forse Lagrange o qualcosa del genere 

che ci assicurava che intersecava qualcosa…che c’era qualcosa che intersecava 

qualcosa..se sono uguali o se uno è più alto dell’altro 

R15: I: Matteo tries to explain to Marco 

R16: M: we have to prove that f (x) intersected with y = x is not empty, different to the 

empty set. We have to prove that it is possible to go from here to there without 

intersecting the bisector line, but if a > b taking a as the point where x = 0 and that lies on 

the upper side of the bisector line, b the point where y = 1 and b lies on the lower side of 

the bisector line there must be a point between the two where the x = y…there must be 

for sure and I can do the same thing changing the position of the two points 

respectively…or collocating them at the same height…I have to write it down in formal 

way… 

I: Now they explain the proof to me 

R17: Matteo: by contradiction we take ‘a’ that is greater and ≠ 0 and ‘b’ minor, now we 

say by absurd it doesn’t go to, at this point ‘a’ will take in this point here any point in the 

middle and that a ≠ y, therefore a point in which y > x always because in a first moment 

we said that it was greater therefore y must be greater than x and in this other little point 

here and here and here it will always be greater strictly greater we arrive here where it 

must be greater than x, at this point we have to take all these points here; its value in 1 

cannot be less than 1, equal 1 or more than 1 because it must stay in this interval here, 

therefore  it is absurd. 
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Alice and Maggialetti (limit problem) 

 

R1: I: they read the text 

R2: A: at the end…it is the difference quotient…only that there is 2h instead of h… 

R3: M: eh yes… 

R4: A: no…wait… 

R5: M: but…this part here the difference quotient is not like that (he refers to f(x0-h)) 

R6: A: no in fact  

R7: M: it is similar to the difference quotient…then…the difference quotient is…(they 

think for a while and then they conclude) 
h

xfhxf )()( 00 −+
…yes…yes it is similar 

to…but there is not f(x0-h) 

R8: I: they ask me if it is true that the difference quotient is 

h
xfhxf )()( 00 −+

  

At this point they write 
h

hxfhxf
h 2

)()(
lim 00

0

−−+
→

 

R9: A: I write also the difference quotient. 

R10: M: with the definition of limit…like we write this…and we take ∀ε 

R11: A: b ut we have two  

R12: M: oh yes...in other words we have the limit of two functions, I mean, the limit of 

h
hxf

2
)( 0 +

 minus the limit of 
h

hxf
2

)( 0 −
 and we cannot say that is the limit of the 

difference, so to speak, we take the result of this… 

R13: A: but with the limit...what we arrive to say? Because…at the end…we know how to 

calculate this limit…we know that the function is defined and differentiable, therefore we 

know that is continuous, then we don’t need to do all the calculation of the limit… 

R14: M: you are right…that’s true  

R15: A: h that goes to zero… 

R16: M: differentiable…therefore continuous  
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R17: A: You know what we can do? In 
h

xfhxf )()( 00 −+
 there was the graph to show 

that it was the slope… 

R18: M: yes…of the line… 

R19: A: perhaps this is related to the slope but shifted up or down… 

R20: A: I mean…when h → 0…do you remember the graph? 

R22: M: no…but if we take this point here it will be x0 and this f(x0) 

R23: A: this distance is h therefore this is x0+h 

R24: M: therefore this is f(x0+h)…ah…and this is f(x0+h) – f(x0) (and they sign on the y-

axis such difference) 

R25: A: then…when h → 0…oh yes…this becomes the tangent line in this point here 

R26: M: yes right  

R27: A: I mean…what does the chord do?  

R28: M: namely, this is the slope of the tangent line to the function… 

R29: A: exactly…was the drawing in this way? 

R30: M: I don’t remember…anyway we have taken a function (he seems to be sure of 

what they did) 

R31: A: now let us try to draw this (
h

hxfhxf
2

)()( 00 −−+
)  

R32: I: at this point they build the function 

R33: A: in my opinion this could work as a difference quotient… 

R34: M: but the difference quotient is the slope of the tangent line… 

R35: A: yes… 

R36: M: and there, it goes…here what does this (
h

hxfhxf
2

)()( 00 −−+
) represent? 

[…] 

R41: A: It could represent the slope of the tangent line… 

R42: M: the tangent line in which point…? 

R43: A: We need to see in which point…then, if h goes to zero…let us see what happens 

when h goes to zero…it means that…here there is a distance of 2h…between x0 + h and 

x0 – h 
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R44: M: si 

R45: A: when h goes to zero, this becomes zero and goes to x0, this one becomes zero and 

goes to x0…therefore all the values go to x0…while here (she refers to 

h
xfhxf )()( 00 −+

)…too…at the end they always go to x0…because the numerator when 

h goes to zero goes to…wait…goes to zero… 

R46: M: here (referring to the expression 
h

xfhxf )()( 00 −+
) it goes to…zero…oh…OK 

R47: Alice signs on the y-axis f(x0+h)-f(x0) and f(x0)-f(x0-h) 

R48: A: then…here we have 
h

hxfhxf
2

)()( 00 −−+
... f(x0-h) is equal to f(x0+h)-… 

R49: M: minus 
h
xf )( 0 ... 

R50: I: they think if they can make a graphically sense of f(x0-h)…but they realize they 

don’t arrive at anything, since they arrive at an identity, therefore they change strategy 

R51: A: but we can write it as...I mean the limit of this one... 

h
hxfhxf

h 2
)()(

lim 00

0

−−+
→

...as a matter of fact we know the numerator, we can write it as 

addition and subtraction of limits in such a way to have inside of the expression  

h
xfhxf )()( 00 −+  

R52: M: OK...you take out 
2
1 … 

R53: I: Alice writes 
h

hxfhxf
h

)()(
lim

2
1 00

0

−−+
→

 

R54: M: do you want to have the difference quotient? 

R55: I: at this point they think for long time 

R56: A: we could write…(she adds and subtracts f(x0)) and then we separate 

it… )
)()(

lim
)()(

lim(
2
1 00

0

00

0 h
xfhxf

h
xfhxf

hh

−−
−

−+
→→

the first become f’(x0) and the 

second one?…I don’t know… 
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R57: M: isn’t it the difference quotient with the difference that there is a minus? 

Therefore it is the same thing but considered at the other side… 

R58: A: therefore it becomes ½ (
h

xfhxf
h

)()(
lim 00

0

−+
→

+ the limit …no…let’s put - 

h
xfhxf

h

)()(
lim 00

0

−−
→

…therefore this (referring to the first limit) is the first derivative  

R59: M: and this one?  

R60: A: it seems like another piece of the function 

R61: M: I mean they are two…this represents this piece, and this represents this other 

piece 

R62: A: yes, but then with the limit you go back here… 

R63: M: that’s true … 

R64: A: then it could be zero…I mean…in both cases you arrive at the slope of the 

tangent line here. Therefore, it is the same thing of doing the slope of the tangent line 

here, minus the slope of the tangent line always here… 

R65: M: you know… 

R66: A: therefore doesn’t it become zero?  

R68: M: yes. Zero. 

 

Daniele and Betta (limit problem) 
 

Daniele draws a function and signs x0, x0+h, x0-h, f(x0), f(x0+h), f(x0-h). 

R1: D: x0+h... 

R2: B: f (x0)… 

R3: D: in my opinion it is the same thing… when you do the limit of the difference 

quotient, you do h
xfhxf

h

)()(
lim 00

0

−+
→ …this minus this over h… 

R4:D: he signs on the drawing done on the protocol, this ⏐ divided by this ⎯) 

R5: B: because f(x0 + h)... 

R6: D: minus f(x0)...is this 

R7: B: Ah…OK…ours would be this over 2h…it is the same thing… 
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R8: D: therefore…it would be h→ 0…how much is this?…eh…it will be the slope of the 

tangent line… 

R9: B: namely…the first derivative 

R10: D: in x0... 

R11: I: if you should justify it rigorously?  

R12: B: this is the same... 

R13: D: because this limit is equal to limit for h going to zero of this… 

R14: I: I didn’t understand... 

R15: D: because the limit of the difference quotient is equal to the limit of this (and he 

signs 
h

hxfhxf
2

)()( 00 −−+
) 

R16: B: this is equal to this (they indicate the two limits…)…we done it graphically  

R17: D: I mean, we do this…it would be the ratio between this difference ⏐ and this one 

⎯ and in our case it would be the ratio between this difference ⏐ and this one ⎯ , 

therefore, x0 + h –(x0 – h) that would be 2h…and this one that would be f(x0 + h) – f(x0 

– h)...therefore, the limit for h that goes to zero would be…I mean both go to x0 

R18: I: do you think this justification to be rigorous? 

R19: D: Probably we didn’t prove it..but in theory…I mean… 

R20: I: Do you think the proof you have done at graphical level to be rigorous? In the 

sense…if you asked you…in a written proof you are asked to prove it in a rigorous 

way…you would stop here? 

R21: D: at an intuitive level, yes…but in my opinion it is not a rigorous justification 

R22: I: why? 

R23: D: because if somebody explained it to me in this way…I wouldn’t… 

R24: I: you wouldn’t believe him? 

R25: D: no…I mean…but it seems to me to know it only in this way… 

R26: I: (note: Daniele thinks) 

R27: D: eh yes…anyway it is correct…I mean, the difference quotient would be this 

chord …namely, it would be the tangent line of this angle, right? The difference 

quotient…therefore, for h that goes to zero, this…this chord…shrinks more and more till 
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when it becomes a point and it is the tangent line in that point…in this case it is the same 

thing 

R28: I: If you were told in this way…it would be enough for you? Would you be 

convinced if one of your classmates explained it to you in this way? Would you say….ah 

OK…yes, yes…or would you have some doubts? 

R29: D: we should write it down… 

R30: I: how do you write such a thing? 

R31: D: firstly, if I have an equation and I do the limits of the both parts…it is the same 

thing… 

R32: B: therefore, if you prove that this is equal to this (namely, 
h

hxfhxf
2

)()( 00 −−+
 

and 
h

xfhxf )()( 00 −+
) 

R33: D: eh…therefore…yes but I must…it would be… 

=
−+

h
xfhxf )()(

2 00 2
2

)()( 00

h
hxfhxf −−+

 

And they simplify in the following way 

2 
h

xfhxf )()( 00 −+
=

h
hxfhxf

2
)()( 00 −−+

 2 

 

R34: I: but then you have already given for sure that this and this one are equal… 

R35: D: ehm…yes… 

R36: I: no, you have to prove it. I thought you would want to prove that 

h
hxfhxf

2
)()( 00 −−+

 = 
h

xfhxf )()( 00 −+
 

R37: D: I wanted to prove that when this becomes zero even this becomes zero…(note: 

he makes an expression like to underline he knows to have said something just to say 

something) 

R38: I: Ah…I thought you wanted that 
h

hxfhxf
2

)()( 00 −−+
 = 

h
xfhxf )()( 00 −+
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R39: D: : yes…but you are right! I already thought to be true the equality…then, I 

looking for…no, no 

R40: B: but if you write the two expressions this from one side of the equal sign and this 

from the other side and for each thing you show what correspond on the graph…ah 

yes…but in this way we start always from the figure… 

R41: D: I can’t write…it is not correct…but…when this becomes zero…if it is equal to 

the other…even the other one has to become zero… 

R42: I: senx for x going to zero becomes zero, x for x going to zero becomes zero, but 

they are not equal… 

R43: D: ah…that’s true…therefore (they continue to manipulate the expression and 

arrive at the second row 2f(x0+h)-2f(x0)=….after that looking at the graph they arrive to 

say that f(x0+h)-f(x0-h)=2f(x0) therefore I substitute here and I look what happens, it 

would be f(x0 + h) – f(x0 – h) = 2 f(x0)…therefore this plus this must be equal to 

this…now I substitute… 

R45: D: can’t I put this equal to c (perhaps I said already said it) and this is equal to c? 

R46: I: the limit? 

R47: B: not only what we have inside…namely… 

R48: D: eh…no no…this is a quotient…I mean it would be this and this…they can be 

also different…but then the limit is the same… 

R49: B: yes…but we have proved that this is equal to this…namely, according to our 

drawing…ok that they could be different…but…let’s try to do as she says (note: I have 

told them that to prove the equality between two things you have to manipulate both 

separately till when one becomes equal to the other). 

R50: D: I have understood…but how do you do? 

R51: B: I mean…let’s multiply, divide by 2…something to make it equal, do you know 

what I mean? 

R52: D: then…wait…it would be…this minus this divided by 2 (note: he is looking at the 

graph signing |) 
2

)()( 00 hxfhxf −−+
 + f(x0 – h)...we need it…because this (note: 

2
)()( 00 hxfhxf −−+

) it would be this plus this which would be f(x0)...and therefore we 
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substitute here… f(x0 + h) minus this…it would be 2(f(x0 + h) – f(x0 – h) + f(x0-h) 

divided by this and multiplied by 1 over h 

R54: D: graphically it would be 
h

hxfhxf )()( 00 −++
 it would be this distance, right? 

Then…we know…this would be 
2

)()( 00 hxfhxf −++
 and to that we added 

f(x0+h)...and making the calculations it becomes this… 

R55: I: do you think of this proof of a rigorous proof? Therefore, with this you would be 

sure that such limit corresponds to the first derivative. 

R56: D: the calculations are correct…but if the function were like that…no…this would 

be x0…this x0+h then I have f(x0) and f(x0+h)…the first rate gives me this chord right? It 

gives me the tangent of this angle…the slope of the line through two points…and in the 

other it gives me this…right? 

R57: I: yes... 

R58: I: Daniele has some perplexity about the drawing…something doesn’t sound 

correct…then I make a third drawing… 

R59: I: Daniele is surprised by the fact that the equality they make before the passage to 

the limit would bring to parallelism between two lines that go through a same point 

R60: D: it is obvious that passing to the limit these two points coincide…namely I can’t 

write that 
h

hxfhxf
2

)()( 00 −++
 = 

h
xfhxf )()( 00 ++

 because it is false… 

R61: D: in fact if f(x) = g(x) then the limit of f(x) is equal to the limit of g(x) but not the 

contrary… 

R62: B: instead we…proving it in this way we proved the equality 

R63: I: because what did you say? 

R64: B: f(x0) = 
2

)()( 00 hxfhxf −++
+ f(x0-h)…we have seen it graphically…but at the 

end in this way…for sure… 

R65: I: f(x0) you said…but  why did you assume that… 

R66: B: these two are equal… 

R67: D: ah, that’s true…in fact… 
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R68: I: It’s not said that f(x0-h) and f(x0+h) would be equidistant from f(x0) 

R69: D: we did a drawing that misled us 

R70: I: the drawing misled you but it also helped you to understand the mistake 

R71: D: I mean it is valid only if it is linear 

R72: B: therefore it doesn’t work…therefore f(x) is not equal…and therefore 

algebraically we can’t do it… 

R73: I: yes…but not like this… 

R74: D: in our case we have to write that f(x0) was equal to this plus this that would 

be…I would like to write f(x0) in function of these two… 

R75: B: but we don’t have to prove that this is equal to this… 

R76: I: exactly…you continue to stuck with the idea to prove that this is equal to 

this…you said an important thing about which implication is true and which is 

not…therefore these two have the same limit but probably they are not equal 

R77: D: but now neither the graphic one convinces me anymore…because we used the 

symmetry respect to f(x0)…no, no…that one is true 

R78: B: ah…yes yes… 

R79: I: what has been the conjecture rose by the graph? Therefore…from the graph you 

said…probably is f’(x0) 

R80: D: yes... 

R81: I: start from that conjecture, namely limit of 
h

hxfhxf
2

)()( 00 −++
= f’(x0) 

R82: D: we have to say that here…I mean…but it is always the middle point of this 

segment 

R83: B: if we wanted to find f(x0) in function of something…but related to this figure… 

R84: D: now I am going to say something stupid…but at the numerator we have a 

function that goes to zero for h going to zero, right? And also below…therefore we have 

to prove that this has the same order of this…then we have a c… 

R85: I: but who told you that it is the first derivative? 

R86: I: Daniele e Betta start thinking how to manipulate algebraically the starting 

expression…Daniele starts writing something and asks me if it is correct…they added 
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and subtracted f(x0) to 
h

hxfhxf
2

)()( 00 −++
 then they conclude that the first addend is 

f’(x0) differing only for the factor ½, and the second I ask why it is also f’(x0) 

R87: D: we justified it graphically… 

 

Daniele and Francesca (fixed point problem) 
 

They immediately draw the bisector line as the line of the fixed points 

R1: Fr.: there must be an intersection between the function and the bisector line 

R2: I: Daniele rereads the text. 

R3: Fr.: if there is the fixed point there must be the intersection with the bisector line, for 

sure 

R4: Dan: there are two for sure…ah no…there is one for sure  

R5: Fr: if there weren’t (fixed points) it (the function) would stay all over or all under the 

bisector line…the only case would be if the bisector line were the asymptote of the 

function… 

R6: Dan: but it is not possible 

R7: Fr: …but it is not possible because it is continuous… 

R8: Dan: : it is not possible because 1 is between…I mean…the function in 1 

exists…that is, here it is included…(ndr: he writes a square parenthesis on 0 and on 1 on 

the x-axis and he does the same thing on the y-axis) 

R9: Fr: therefore the bisector line cannot be an asymptote, and then if it is not an 

asymptote it must cross it for sure… 

R10: Fr: (talking to I) probably we answered…if A is a fixed point it must have an 

intersection with the bisector line…the only case for the contrary is if the bisector line 

were the asymptote of the function…but, if the function is defined from [0,1] to [0,1] 

included…the function is defined in 1 too, therefore at the most the point is (1,1) or it 

crosses it. 

R11: I: Daniele draws the function 

R12: I: this, though, doesn’t work because it doesn’t take all the values form 0 to 1. 

R13: Dan: ah it must take all the values 
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R14: Fr: ah but then it has two for sure…even more 

R15: I: why two for sure? 

R16: Dan: (he draws several functions, then he realizes that it is not like that) anyway, 

there is one fixed point for sure…if it must take all the values and if we make it start from 

here…if it must take all the values it must start from this point…from this…this…because 

it can’t come back…to take all the values it must start from the maximum up to the 

minimum…if we think of that theorem where if you have a point here and one here it must 

go through here, for sure  

R17: Fr: it is the Theorem of the Zeros… 

R18: Dan: (he is repeating the proof of the theorem of zeros which uses the 

dichotomy)… but how can we divide the bisector line? 

R19: Fr: then it is not the one of the zeros…it is of Weierstrass 

R20: Dan: (he tries to draw the function) it does like this…and then it will go to B 

R21: Fr: we can do like this and then going down straight to B 

R22: Dan: f(a)>x   f(b), namely one of the possible…I mean whatever could be…a could 

not do…and yes because b at most is here…that means that this point must stay always 

over x 

R23: Fr: do you want to say that if a is over, b must stay below, and vice versa? 

R24: Dan: exactly, otherwise it doesn’t take everything, but the worst case if a is here to 

take all the values it should do like this and it would not continuous anymore… 

R25: Fr: why like this? 

R26: Dan: because in the same point it takes infinite values…at least I think…wait a 

second…if a>0 and b<0 the function must intersect the axis therefore the issue is always 

the same… 

R27: Fr: oh yes…instead of the x-axis we have a line 

R28: Dan: the bisector line… 

R29: Fr: ah but then it is done…considering a>0, namely, a is greater than… 

R30: Dan:  a>x….f(a)… 

R31: Fr: ah yes… f(a)>x   f(b)<x    and we know that must be this because it must take 

all the values… 
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R32: Dan: this should be a fixed point f(x)=…let’s do f(x)=c 

R33: Fr: and this must be like this because it must take all the values 

R34: Dan: or like that or the contrary…no no 

R35: Fr: no the contrary not because it can’t go under this, it must a value greater than x 

and this one less than x. 

R36: Dan: ok divide it in two (he traces a line to divide the bisector line in two…in one 

part he draws the axes and he tries to reproduce the graphical proof of the theorem of 

zeros)…then we would say if this one is here and that one is there then we have an 

intersection for sure, but I don’t remember… 

R37: Fr: this is a proof because we said…if there is a point over and a point below and if 

the function is continuous…there must be an intersection…there exists a point c such that 

f(c)…the theorem of zeros said f(c) = 0…if it is the theorem of Weierstrass… 

R38: I: Daniele is not convinced…then Francesca repeats… 

R39: Dan: well…but we have to prove that the fixed point exists… 

R40: Fr: yes but if we say…this is our condition in order all the values to be taken…it 

takes all the values only if one is over and the other one is under…for the theorem of 

Weierstrass there exists a point belonging to it…for sure because it said: he put the line in 

this way but it is the same thing and it said if a point is over and the other one is under 

there exists a point on the line because the function is continuous…therefore it is the 

same thing if the line is the bisector line… 

R41: I: Daniele thinks… 

R42: Dan: (talking to me) is it enough in this way?…I mean, if it is a proof that can be 

accepted or not (Daniele explains the proof)…by the moment that it must take all the 

values of the Image, a > x   b < x…(he corrects himself)   f(a) > x  f(b) < x 

R43: I: what is x? 

R44: Dan: x  is the bisector line, otherwise if b were here it could not take all the values 

of the Image because the function could not do like this (and he traces a vertical line)… 

R45: I: I mean…because f(b) must stay under the bisector line? 

R46: Fr: no no that’s true…not necessarily f(b), but there is a point below the bisector 

line therefore if there is a point over the bisector line and one below not necessarily f(a) 
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and f(b) if we call 0 “a” e 1 “b”, then for the theorem of Weierstrass intersects the line 

for sure 

R47: I: why the theorem of Weierstrass? 

R48: Fr: because we studied the theorem of zeros that says that if the function is 

continuous and there is a point where the function is over the x-axis and one which is 

under then there exists an x such that f(x)=0, same thing for Weierstrass…if I shift the 

line…perhaps it is not the theorem of Weierstrass… 

R49: I: But the theorem of Weierstrass is that one which says (and I state it) 

R50: Fr: ah no…anyway, the theorem of the zeros shifted up…for example this is the 

line x = 2 there is necessarily a point f(x) = 2 and therefore the same thing if we take the 

bisector line as the line…there is a point that is over…one that is under…there must exist 

necessarily a point that lies on the bisector line 

R51: I: Why? 

R52: Fr: because the function is continuous 

R53: I: Then prove exactly this…if the function is continuous it intersects the bisector 

line…how would you prove that if the function satisfies the conditions then there is a 

point of intersection with the bisector line 

R54: Dan: If I divide the bisector line in several intervals… 

R55: I: how? 

R56: Dan: if f in the new interval (a,α) (but it takes it on the bisector line)…if f(a)… 

R57: I: but the interval on the line how do you take it? How do you define it? 

R58: Dan: I would divide the segment…this is a known distance, isn’t this? It is the 

diagonal of the square that is 2 …and therefore I don’t know… 

R59: I:Did you understand what I want to say?…the idea is interesting, but you have to 

tell me how you divide the line (the graphic aid is very important) 

R60: Dan: if this is α for example…if I divide this which can be considered a 

segment…into two equal parts… f(α) is still > α…it means that there could be an 

intersection with the bisector line 

R61: Dan: I mean I continue dividing it… 
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Appendix C: Scanner of the protocols 

 
 
 The following pages present the scanner of the protocols produced by the 

students. 

The first protocol has been produced by Marco and Matteo in the solution of the problem 

about the fixed point (p.244). 

The second protocol shows the work done by Alice and Roberta during their attempt to 

solve the fixed point problem (p. 245). 

The third protocol concerns again the solution about the fixed point and it has been 

produced by Francesca and Daniele (p. 246). 

The fourth protocol regards the problem about the limit and it is Betta and Daniele’s 

work (p. 247). 

The fifth protocol has been produced by Alice and Marco and it shows their attempt in 

the solution of the problem regarding the limit (p. 248-250) 

The last protocol is again about the limit problem and it is the result of Francesca and 

Serena’s attempts (p.251-252) 
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Marco and Matteo’s protocol 
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Alice and Roberta’s protocol 
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Francesca and Daniele’s protocol 
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Daniele and Betta’s protocol 
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Alice and Marco’s protocol (part 1) 
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Alice and Marco’s protocol (part 2) 
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Alice and Marco’s protocol (part 3) 
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Francesca and Serena’s protocol (part 1) 
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Francesca and Serena’s protocol (part 2) 
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